The synthesis and characterization of the adducts of n-alkyl amine and palladium n-alkyl carboxylate, [Pd(R2NH2)2(R1COO)2] (R1 = 1, 7, and 11; R2 = 8, 12, and 16), as precursors for the synthesis of palladium nanoparticles (PdNPs) was carried out via differential scanning calorimetry, FT-IR, Raman and UV-Vis spectroscopy, NMR spectroscopy (1H, 13C pulsed field gradient spin-echo (PGSE), and 13C CP-MAS), and powder X-ray diffraction. Pd n-alkyl carboxylates were obtained by a ligand exchange reaction from palladium acetate and the appropriate aliphatic carboxylic acid. It is proposed that carboxyl moieties in the presence of amine ligands are bound to palladium ions via monodentate bonding as opposed to bridging bidentate coordination of pure palladium carboxylate which exists in the form of polymer aggregates. All the studied palladium carboxylate/amine complexes form bilayer lamellar structures and exhibit first-order melting transitions. The evidence presented in this study shows that the phase behavior of bivalent metal carboxylates is mainly controlled by the type of coordination of carboxylate head groups. For n-alkyl carboxylates, linear chain type aggregates replace the trimeric units of Pd acetate. In solution, in the presence of amine, palladium salt aggregates disintegrate and the Pd complex is isolated and stabilized by amine molecules. Using bis(amine) palladium carboxylate adducts as precursors, palladium nanoparticles were fabricated. During high temperature thermolysis, the bis(amine) Pd carboxylate complex decomposes to form small sized Pd nanoparticles. Combining NMR techniques with FTIR spectroscopy, it was possible to follow an original stabilization mechanism. PdNPs are stabilized by weakly interacting long chain aliphatic amide and carboxylic acid derived from the palladium precursor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt00638j | DOI Listing |
Ind Eng Chem Res
January 2025
Department of Chemistry, Physics, and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States.
An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.
View Article and Find Full Text PDFSci Rep
January 2025
College of Pharmacy, The Islamic University, Najaf, Iraq.
Palladium nanoparticles were supported on L-H-functionalized KIT-6 (KIT-6@L-H-Pd) and evaluated using various characterization techniques such as TGA, FT-IR, SEM, XRD, EDS, and BET. KIT-6@L-H-Pd showed excellent catalytic performance as a recyclable nanocatalyst for the oxidation of sulfides to sulfoxides and the amination of aryl halides. This approach offers multiple benefits, including the use of readily available and cost-effective materials, a straightforward procedure, short reaction durations, high yields, and a catalyst that is easy to separate and reuse.
View Article and Find Full Text PDFClin Chim Acta
January 2025
ARKRAY Healthcare Pvt. Ltd., Plot No. 336, 338, 340, Rd Number 3, GIDC, Sachin, 394230 Surat, Gujarat, India.
A lateral flow immunoassay (LFIA) employing palladium nanoparticles (PdNPs) labelled with antibodies has been innovatively designed for the precise detection of Plasmodium falciparum pLDH and HRPII antigen. This study focuses on development of LFIA based on PdNPs detection system to substantially enhance the visual detectability (vLOD), achieving an impressive 12 parasites/microliter (p/µl) vLOD in comparison with conventional system represented 50 p/µl vLOD. The research introduces a novel amplification system that not only heightens the sensitivity of LFIA but also maintains intense coloration.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
Background: Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus. This toxin is highly carcinogenic and toxic, posing a serious threat to human and animal health. AFB1 primarily enters the human body through contaminated food, particularly peanuts, corn, nuts, and wheat.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Panjab University, Sector 14, Chandigarh-160014, India.
This work reports the step-wise fabrication of a core-shell plasmonic nanocomposite Pd@BTL-Cd consisting of a BTL-Cd shell and a palladium nanoparticle core. BTL-Cd is the [Cd(BTL)·CdCl] complex where the heptadentate framework of the bis-compartmental ligand encapsulated two Cd(II) centres in separate pockets. Pd@BTL-Cd has been found to be highly efficient for the photocatalytic conversion of furfural (a biomass-derived aldehyde) to furfuryl amine reductive amination in aqueous ammonia at room temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!