Spectroscopic characterization of a thermodynamically stable doubly charged diatomic molecule: MgAr.

Phys Chem Chem Phys

Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland.

Published: May 2021

Although numerous doubly positively charged diatomic molecules (diatomic dications) are known from investigations using mass spectrometry and ab initio quantum chemistry, only three of them, NO, N and DCl, have been studied using rotationally resolved optical spectroscopy and only about a dozen by vibrationally resolved double-ionization methods. So far, no thermodynamically stable diatomic dication has been characterized spectroscopically, primarily because of experimental difficulties associated with their synthesis in sufficient densities in the gas phase. Indeed, such molecules typically involve, as constituents, rare-gas, halogen, chalcogen, and metal atoms. We report here on a new approach to characterize molecular dications based on high-resolution photoelectron spectroscopy of the singly charged parent molecular cation and present the first spectroscopic characterization of a thermodynamically stable diatomic dication, MgAr. From the fully resolved vibrational and partially resolved rotational structures of the photoelectron spectra of MgAr and MgAr, we determined the potential-energy function of the electronic ground state of MgAr, its dissociation (binding) energy (D = 10 690(3) cm), and its harmonic (ω(MgAr) = 327.02(11) cm) and anharmonic (ωx(MgAr) = 2.477(15) cm) vibrational constants. The analysis enables us to explain quantitatively how the strong bond arises in this dication despite the fact that Ar and Mg both have a full-shell rare-gas electronic configuration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115400PMC
http://dx.doi.org/10.1039/d1cp00730kDOI Listing

Publication Analysis

Top Keywords

thermodynamically stable
12
spectroscopic characterization
8
characterization thermodynamically
8
charged diatomic
8
stable diatomic
8
diatomic dication
8
diatomic
5
mgar
5
stable doubly
4
doubly charged
4

Similar Publications

The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.

View Article and Find Full Text PDF

Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications.

Methods: Solutions of 10% (/) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS.

View Article and Find Full Text PDF

RNA nanoparticles, derived from the packaging RNA three-way junction motif (pRNA-3WJ) of the bacteriophage phi29 DNA packaging motor, have been demonstrated to be thermodynamically and chemically stable, with promise as a nanodelivery system. : A previous study showed that RNA nanoparticles with antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) inhibited cell proliferation via WST-1 assay. To further investigate the antiangiogenic potential of these RNA nanoparticles, a modified three-dimensional (3D) spheroid sprouting assay model of human umbilical vein endothelial cells was utilized in the present study.

View Article and Find Full Text PDF

Effluents containing synthetic anionic dyes can pose a risk to ecosystems, and they must be treated before their release to the environment. Biosorption, a simple and effective process, may be a promising solution for treating these effluents. In this work, chitosan beads were crosslinked with epichlorohydrin to produce a highly stable and performant biosorbent to remove Brilliant Blue FCF dye.

View Article and Find Full Text PDF

Ezetimibe Anticancer Activity via the p53/Mdm2 Pathway.

Biomedicines

January 2025

Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Cnr. Pioneer and Christiaan de Wet Roads, B2-010 Calabash Building, Florida, Johannesburg 1710, South Africa.

Background: Ezetimibe is used to treat cardiovascular disease as it blocks the sterol transporter Niemann-Pick C1-Like 1 (NPC1CL1) protein. However, recent evidence indicates that Ezetimibe inhibits several cancers indirectly by reducing circulating cholesterol or via specific signalling pathways.

Methods And Results: Our in silico studies indicate that Ezetimibe binds to the Tp53 binding domain in Mdm2, forming a more thermodynamically stable complex than nutlin3a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!