In this work, we present the construction of a multilayered PtSe2/Ge heterostructure-based photodetector array comprising 1 × 10 device units operating in the short-wavelength infrared (SWIR) spectrum region. The as-fabricated heterostructures show an obvious photovoltaic effect, providing the devices with the ability to work as self-driven photodetectors. Upon 1550 nm illumination, a typical photodetector exhibits prominent photoresponse performance with the current on/off ratio, responsivity, external quantum efficiency and specific detectivity reaching 1.08 × 103, 766 mA W-1, 61.3% and 1.1 × 1011 Jones, respectively. The device also has a fast response speed with rise/fall times of 54.9 μs/56.6 μs. Thanks to the respectable homogeneity in device performance, the photodetector array can reliably record an image of a "diode symbol" produced by SWIR irradiation. What is more, the photodetector is successfully integrated into a SWIR optical communication system serving as an optical receiver to transmit a text signal. The above results imply a huge possibility of the present heterostructure-based photodetector array for some optoelectronic purposes such as SWIR image sensing and optical communication applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr00333jDOI Listing

Publication Analysis

Top Keywords

photodetector array
16
optical communication
12
short-wavelength infrared
8
image sensing
8
sensing optical
8
communication applications
8
heterostructure-based photodetector
8
photodetector
6
construction ptse/ge
4
ptse/ge heterostructure-based
4

Similar Publications

Topologically Engineered High- Quasi-BIC Metasurfaces for Enhanced Near-Infrared Emission in PbS Quantum Dots.

Nano Lett

January 2025

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China.

Enhancing photoluminescence (PL) efficiency in colloidal quantum dots is pivotal for next-generation near-infrared photodetectors, imaging systems, and photonic devices. Conventional methods, especially metal-based plasmonic structures, suffer from large optical losses, which limits their practical use. Here, we introduce a quasi-bound state in the continuum (quasi-BIC) metasurface on a silicon-on-insulator platform, tailored to provide high-quality factor resonances with minimized losses.

View Article and Find Full Text PDF

Band Tailoring Enabled Perovskite Devices for X-Ray to Near-Infrared Photodetection.

Adv Sci (Weinh)

January 2025

School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.

Perovskite semiconductors have shown significant promise for photodetection due to their low effective carrier masses and long carrier lifetimes. However, achieving balanced detection across a broad spectrum-from X-rays to infrared-within a single perovskite photodetector presents challenges. These challenges stem from conflicting requirements for different wavelength ranges, such as the narrow bandgap needed for infrared detection and the low dark current necessary for X-ray sensitivity.

View Article and Find Full Text PDF

Achieving high-performance lead sulfide quantum dot (PbS QD)-based photodetectors requires enhanced carrier transfer, which inevitably leads to an increased dark current. Balancing a high photocurrent and low dark current is crucial. In this work, a bridge-trap structure constructed by the atomic layer deposition of dual oxides is proposed to simultaneously enhance photoresponse performance and reduce dark current.

View Article and Find Full Text PDF

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.

View Article and Find Full Text PDF

Perovskite retinomorphic image sensor for embodied intelligent vision.

Sci Adv

January 2025

Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!