A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of dityrosine nanotubes on the expression of dopamine and differentiation in neural cells. | LitMetric

In this study, we report the synthesis of self-assembled dityrosine nanotubes as a biologically functional scaffold and their interactions with neural cells. Quantum chemical methods were used to determine the forces involved in the self-assembly process. The physicochemical properties of the nanostructures relevant to their potential as bioactive scaffolds were characterized. The morphology, secondary structure, crystallinity, mechanical properties, and thermal characteristics of YY nanotubes were analyzed. The influence of these nanotubes as scaffolds for neural cells was studied in vitro to understand their effects on cell proliferation, morphology, and gene expression. The scanning electron microscopy and fluorescence confocal microscopy demonstrated the feasibility of nanotube scaffolds for enhanced adhesion to rat and human neural cells (PC12 and SH-SY5Y). Preliminary ELISA and qPCR analyses demonstrate the upregulation of dopamine synthesis and genes involved in dopamine expression and differentiation. The expression levels of DβH, AADC, VMAT2 and MAOA in SH-SY5Y cells cultured on the nanotube scaffolds for 7 days were elevated in comparison to the control cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb02680hDOI Listing

Publication Analysis

Top Keywords

neural cells
16
dityrosine nanotubes
8
nanotube scaffolds
8
cells
6
influence dityrosine
4
nanotubes
4
expression
4
nanotubes expression
4
expression dopamine
4
dopamine differentiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!