We review recent developments in the framework of simplified quantum chemistry for excited state and optical response properties (sTD-DFT) and present future challenges for new method developments to improve accuracy and extend the range of application. In recent years, the scope of sTD-DFT was extended to molecular response calculations of the polarizability, optical rotation, first hyperpolarizability, two-photon absorption (2PA), and excited-state absorption for large systems with hundreds to thousands of atoms. The recently introduced spin-flip simplified time-dependent density functional theory (SF-sTD-DFT) variant enables an ultrafast treatment for diradicals and related strongly correlated systems. A few drawbacks were also identified, specifically for the computation of 2PA cross sections. We propose solutions to this problem and how to generally improve the accuracy of simplified schemes. New possible simplified schemes are also introduced for strongly correlated systems, e.g., with a second-order perturbative correlation correction. Interpretation tools that can extract chemical structure-property relationships from excited state or response calculations are also discussed. In particular, the recently introduced method-agnostic RespA approach based on natural response orbitals (NROs) as the key concept is employed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.1c02362DOI Listing

Publication Analysis

Top Keywords

simplified quantum
8
quantum chemistry
8
response properties
8
excited state
8
improve accuracy
8
response calculations
8
correlated systems
8
simplified schemes
8
response
5
perspective simplified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!