A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Optimized Weighted Naïve Bayes Method for Flood Risk Assessment. | LitMetric

An Optimized Weighted Naïve Bayes Method for Flood Risk Assessment.

Risk Anal

School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.

Published: December 2021

Floods occur frequently and cause considerable damage to local environments. Effectively assessing the flood risk contributes to reducing loss caused by such disasters. In this study, the weighted naïve Bayes (WNB) method was selected to evaluate flood risk, and the entropy weight method was employed to compute the weights. A sampling and verifying model was employed to generate the most accurate conditional probability table (MACPT) to calculate the probability of flooding. When using the framework integrating WNB with the sampling and verifying model, previous studies could not obtain a WNB-based MACPT and the WNB classification accuracy, for lacking WNB functions that could be called directly. Facing this issue, in this study we developed WNB functions with the MATLAB platform to directly integrate with the sampling and verifying model to generate a WNB-based MACPT, contributing to the greater interpretability and extensibility of the model. Shantou and Jieyang cities in China were selected as the study area. The results demonstrate that: (1) a WNB-based MACPT can reflect the real spatial distribution of flood risk and (2) the WNB outperform the NB when integrated with the sampling and verifying model. The resulting gridded estimation reveal a detailed spatial pattern of flood risk, which can serve as a realistic reference for decision making related to floods. Furthermore, the proposed method uses less data, which would be helpful in developing countries where long-term intensive hydrologic monitoring is limited.

Download full-text PDF

Source
http://dx.doi.org/10.1111/risa.13743DOI Listing

Publication Analysis

Top Keywords

flood risk
20
sampling verifying
16
verifying model
16
wnb-based macpt
12
weighted naïve
8
naïve bayes
8
wnb functions
8
wnb
6
flood
5
risk
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!