A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Co-disposal of lignite fly ash and coal mine waste rock for neutralisation of AMD. | LitMetric

Co-disposal of lignite fly ash and coal mine waste rock for neutralisation of AMD.

Environ Sci Pollut Res Int

Department of Civil, Environmental and Natural Resources Engineering, Division of Geosciences and Environmental Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden.

Published: September 2021

Waste rocks (WRs) from a lignite-producing coalfield and fly ash (FA) produced from the same lignite have been investigated in this study with a primary objective to determine the potential for co-disposal of WRs and FA to reduce the environmental contamination. Mixing WRs with FA and covering WRs with FA have been investigated. Particle size effect caused ≤2 mm particles to produce low pH (~2) and metal-laden leachates, indicating higher sulphide minerals' reactivity compared to larger particles (≤10 mm, pH ~ 4). Co-disposal of FA as mixture showed an instantaneous effect, resulting in higher pH (~3-6) and better leachate quality. However, acidity produced by secondary mineralisation caused stabilisation of pH at around 4.5-5. In contrast, the pH of the leachates from the cover method gradually increased from strongly acidic (pH ~ 2) to mildly acidic (pH ~ 4-5) and circumneutral (pH ~ 7) along with a decrease in EC and elemental leaching. Gradually increasing pH can be attributed to the cover effect, which reduces the oxygen diffusion, thus sulphide oxidation. FA cover achieved the pH necessary for secondary mineralisation during the leaching experiment. The co-disposal of FA as cover and/or mixture possesses the potential for neutralisation and/or slowing down AMD and improving leachate quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410730PMC
http://dx.doi.org/10.1007/s11356-021-13500-wDOI Listing

Publication Analysis

Top Keywords

fly ash
8
leachate quality
8
secondary mineralisation
8
co-disposal
4
co-disposal lignite
4
lignite fly
4
ash coal
4
coal mine
4
mine waste
4
waste rock
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!