Background: Neutralizing antibodies (nAbs) against SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) can play an important role in reducing impacts of the COVID-19 pandemic, complementing ongoing public health efforts such as diagnostics and vaccination. Rapidly designing, manufacturing and distributing nAbs requires significant planning across the product value chain and an understanding of the opportunities, challenges and risks throughout.
Methods: A systems framework comprised of four critical components is presented to aid in developing effective end-to-end nAbs strategies in the context of a pandemic: (1) product design and optimization, (2) epidemiology, (3) demand and (4) supply. Quantitative models are used to estimate product demand using available epidemiological data, simulate biomanufacturing operations from typical bioprocess parameters and calculate antibody production costs to meet clinical needs under various realistic scenarios.
Results: In a US-based case study during the 9-month period from March 15 to December 15, 2020, the projected number of SARS-CoV-2 infections was 15.73 million. The estimated product volume needed to meet therapeutic demand for the maximum number of clinically eligible patients ranged between 6.3 and 31.5 tons for 0.5 and 2.5 g dose sizes, respectively. The relative production scale and cost needed to meet demand are calculated for different centralized and distributed manufacturing scenarios.
Conclusions: Meeting demand for anti-SARS-CoV-2 nAbs requires significant manufacturing capacity and planning for appropriate administration in clinical settings. MIT Center for Biomedical Innovation's data-driven tools presented can help inform time-critical decisions by providing insight into important operational and policy considerations for making nAbs broadly accessible, while considering time and resource constraints.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022923 | PMC |
http://dx.doi.org/10.1093/abt/tbab006 | DOI Listing |
Res Pract Thromb Haemost
November 2024
Sanofi, Ghent, Belgium.
Background: International Society on Thrombosis and Haemostasis guidelines for immune-mediated thrombotic thrombocytopenic purpura (iTTP) treatment recommend concurrent therapeutic plasma exchange (TPE), immunosuppressive therapy (IST), and caplacizumab. TPE can complicate antidrug antibody (ADA) measurements by transferring pre-existing antibodies (pre-Abs) into patients via donor plasma and/or diluting treatment-emergent (TE) ADAs.
Objectives: To assess the presence of ADAs in patients with iTTP who received caplacizumab.
The measurement of neutralizing immune responses to viral infection is essential, given the heterogeneity of human immunity and the emergence of new virus strains. However, neutralizing antibody (nAb) assays often require high-level biosafety containment, sophisticated instrumentation, and long detection times. Here, as a proof-of-principle, we designed a nanoparticle-supported, rapid, electronic detection (NasRED) assay to assess the neutralizing potency of monoclonal antibodies (mAbs) against SARS-CoV-2.
View Article and Find Full Text PDFVirol J
November 2024
Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China.
Background: From 2022 to 2023, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by Omicron variants spread rapidly in Guangdong Province, resulting in over 80% of the population being infected.
Results: To investigate the levels of neutralizing antibodies (NAbs) in individuals following the rapid pandemic and to evaluate the cross-protection against currently circulating variants of SARS-CoV-2 in China, neutralization assay and magnetic particle chemiluminescence method were used to test the 117 serum samples from individuals who had recovered 4 weeks post-infection. The results indicated that the levels of NAbs against prototype and Omicron variants BA.
Br J Haematol
December 2024
Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK.
Whilst SARS-CoV-2 mRNA vaccines generate high neutralising antibodies (nAb) in most individuals, haematopoietic stem cell transplant (HSCT) and chimeric antigen receptor T-cell (CAR-T) recipients respond poorly. HSCT/CAR-T treatment ablates existing immune memory, with recipients requiring revaccination analogous to being vaccine naive. An optimal revaccination strategy for this cohort has not been defined.
View Article and Find Full Text PDFJ Med Virol
November 2024
CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France.
Kidney transplant recipients (KTRs) are highly vulnerable to COVID-19. An intensified scheme of vaccination offers short-term protection to the 50%-75% of KTRs able to develop a germinal center reaction, required for the generation of neutralizing titers of antibodies (NAbs). However, the duration of this vaccinal protection is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!