To explore the application value of color duplex sonography and enhanced computerized tomography (CT) inspection based on a nanocontrast agent in diagnosis and pathogenesis in giant cell arteritis (GCA), the GCA nude mouse model was constructed. In this study, 40 healthy male BalB/c nude mice aged 6-8 weeks were randomly divided into a control group (no model) and an experimental group (model), with 20 mice in each group, and the temporal artery tissue of GCA patients diagnosed as positive by temporal artery biopsy was implanted into nude mice to construct a GCA nude mouse model. Abdominal aortic biopsy and immunohistochemistry were used to verify the success of the GCA nude mouse model. All nude mice were subjected to color duplex sonography and enhanced CT examination based on a nanocontrast agent. At the same time, the basic indicators such as body weight, temperature, white blood cell (WBC), lymphocytes (LYM), hemoglobin (HGB), and platelet (PLT) were measured, and the protein expression levels of interleukin-6 (IL-6) and signal transducer and activator of transcription 3 (STAT3) were detected by immunohistochemistry. The results showed that the temporal artery wall of the nude mice in the experimental group thickened and the lumen was significantly narrowed, indicating that the cell arteritis model of nude mice was successfully constructed; ultrasound examination showed that the right superficial temporal artery vascular cavity narrowed, the blood flow signal changed like a filling defect around the periphery, and there was a low echo halo. CT examination showed that the left superficial temporal artery narrowed, and the inner diameter of the narrow segment of blood vessels changed like a bead. The body weight of nude mice in the experimental group decreased significantly after the modeling was completed ( < 0.05); after modeling, the body temperature of the nude mice in the experimental group increased significantly ( < 0.05); LYM and HGB values of nude mice in the experimental group were significantly lower than those in the control group ( < 0.05); the content of IL-6, STAT3, IL-6, and STAT3 proteins in the arterial tissue of nude mice in the experimental group was lower than that of the control group ( < 0.05), indicating that color duplex sonography and CT contrast agent technology can be used in the diagnosis and development mechanism research of GC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053047PMC
http://dx.doi.org/10.1155/2021/6627925DOI Listing

Publication Analysis

Top Keywords

nude mice
36
experimental group
24
temporal artery
20
mice experimental
20
nude mouse
16
mouse model
16
color duplex
16
duplex sonography
16
nude
13
cell arteritis
12

Similar Publications

High interstitial fluid pressure enhances USP1-dependent KIF11 protein stability to promote hepatocellular carcinoma progression.

J Transl Med

January 2025

Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi, China.

Background: HCC is characterized by a high interstitial fluid pressure (HIFP) environment, which appears to support cancer cell survival. However, the mechanisms behind this phenomenon are not fully understood.

Methods: This study investigates the role of kinesin family member 11 (KIF11) in HCC under HIFP conditions, using both in vivo and in vitro models.

View Article and Find Full Text PDF

Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.

Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.

View Article and Find Full Text PDF

DNA replication stress underpins the vulnerability to oxidative phosphorylation inhibition in colorectal cancer.

Cell Death Dis

January 2025

Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.

Mitochondrial oxidative phosphorylation (OXPHOS) is a therapeutic vulnerability in glycolysis-deficient cancers. Here we show that inhibiting OXPHOS similarly suppresses the proliferation and tumorigenicity of glycolytically competent colorectal cancer (CRC) cells in vitro and in patient-derived CRC xenografts. While the increased glycolytic activity rapidly replenished the ATP pool, it did not restore the reduced production of aspartate upon OXPHOS inhibition.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.

View Article and Find Full Text PDF

Cyclin-dependent kinase 9 (CDK9) plays a pivotal role in promoting oncogenic transcriptional pathways, significantly contributing to the development and progression of cancer. Given the unique biostability of d-amino acid, the development of d-amino acid-containing peptides (DAACPs) is a promising strategy for cancer treatment. Currently, no DAACPs inhibitor targeting CDK9-cyclin T1 have been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!