Large mandibular defects are considered difficult reconstructive challenges for oral and maxillofacial surgeons. Cell therapy, as an alternative technique, might increase the speed of bone regeneration. This study aimed to investigate bone regeneration in large defects of dog mandibles using allogenic adipose-derived stem cells on gelatin foam as a cell carrier. The tissue engineering phase consisted of the sampling of adult dogs' adipose tissue that can easily be isolated from adipose stem cells (ASCs) of the dogs, ASCs were cultured in Dulbecco's Modified Eagle's Medium (DMEM, Gibco, USA) with low glucose, containing 10% fetal bovine serum (FBS) (Sigma, USA) and 1% penicillin-streptomycin (Gibco, USA), with the characterization of dog ASCs and gelatin-transplanted ASCs. Six dogs were included in this experimental study in the next step and randomly assigned to the treatment and control groups. The samples in both groups underwent surgery under general anesthesia to create uniform 3-cm bony defects. The samples in both groups were reconstructed with titanium reconstruction plates and screws. A large bone gap filled with ASCs (5×10 ) was seeded on gelatin (ASCs) in the treatment group. In the control group, bony defects were filled with a cell delivery carrier without ASCs. Six months after transplantation, the animals' mandibles were evaluated by CT scan imaging, and the results were quantified through the Hounsfield unit (HU). The data were analyzed with t-test. Before transplantation, the nature of the stem cells was confirmed by the expression of CD44 and CD105 cell markers at 71.9% and 89.3%, respectively, and a lack of the CD45 cell marker expression at 2.2%. Evaluation of CT scan images showed significantly higher bone repair in the ASCs group (920.25±572.92 HU) than in the control group (-94.746± 08.42). The bone regeneration of the ASCs group was significantly higher than that in the control group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058160 | PMC |
http://dx.doi.org/10.34172/joddd.2021.005 | DOI Listing |
Odontology
January 2025
School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China.
The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.
View Article and Find Full Text PDFJBMR Plus
February 2025
Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.
Mineralizing cells release a special class of extracellular vesicles known as matrix vesicles (MV), crucial for bone mineralization. Following their release, MV anchor to the extracellular matrix (ECM), where their highly specialized enzymatic machinery facilitates the formation of seed mineral within the MV's lumen, subsequently releasing it onto the ECM. However, how MV propagate mineral onto the collagenous ECM remains unclear.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Introduction: This study utilized a injectable curcumin (Cur)-infused calcium phosphate silicate cement (CPSC) for addressing defects caused by bone cancer, and evaluated its promoting bone regeneration and exerting cytotoxic effects on osteosarcoma cells.
Methods: The material's physicochemical properties, biocompatibility with osteoblasts, and cytotoxicity toward osteosarcoma cells were rigorously analyzed.
Results: The findings demonstrate that CPSC-Cur signicantly prolongs the setting time, which can be optimized by adding silanized cellulose nanober (CNF-SH) to achieve a balance between workability and mechanical strength.
J Mater Chem B
January 2025
State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration.
View Article and Find Full Text PDFJ Dent Res
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!