An accurate olfactory system for recognizing semiochemicals and environmental chemical signals plays crucial roles in survival and reproduction of insects. Among all olfaction-related proteins, olfactory receptors (ORs) contribute to the conversion of chemical stimuli to electric signals and thereby are vital in odorant recognition. Olfactory receptor co-receptor (Orco), one of the most conserved ORs, is extremely essential in recognizing odorants through forming a ligand-gated ion channel complex with conventional ligand-binding odorant receptors. We have previously identified aggregation pheromone in (Coleoptera: Scarabaeidae), a native agricultural and horticultural pest in East-Asia. However, to our best knowledge, its olfaction recognition mechanisms are still veiled. To illustrate how recognize aggregation pheromone and host plants, in the present study we cloned and sequenced the full-length gene from antennae (named ) and found that is highly conserved and similar to Orcos from other Coleoptera insects. Our real-time quantitative PCR (qRT-PCR) results showed that is mainly expressed in antenna. We also demonstrated that silencing using RNA interference through injecting dsOrco fragment significantly inhibited expression in comparison with injecting control dsGFP and subsequently revealed using electroantennogram and behavioral bioassays that decreasing transcript abundance significantly impaired the responses of to intraspecific aggregation pheromone and prolonged the time of spending on food seeking. Overall, our results demonstrated that is crucial in mediating odorant perception in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8076894 | PMC |
http://dx.doi.org/10.3389/fphys.2021.649590 | DOI Listing |
Front Physiol
January 2025
Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China.
Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).
Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .
PLoS One
December 2024
Laboratory of Biology and Bio-Georessources LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana, Tunisia.
J Econ Entomol
November 2024
State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China.
Insect pheromones are critical chemical signals that regulate intraspecific behavior and play a key role in the dynamic monitoring and control of pest populations. Historically, research on insect pheromones has primarily focused on lipid-based compounds. However, terpenes and terpenoids, which are widely occurring classes of bioactive compounds, also play significant roles in insect pheromone blends.
View Article and Find Full Text PDFBMC Biol
November 2024
Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
Background: Insects detect odours using odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs) in the antennae. Ecologically important odours are often detected by selective and abundant OSNs; hence, ORs with high antennal expression. However, little is known about the function of highly expressed ORs in beetles, since few ORs have been functionally characterized.
View Article and Find Full Text PDFChem Rec
November 2024
Laboratório de Semioquímicos, Departamento de Química, Universidade Federal do Paraná, UFPR, 81531-980, Curitiba, PR, Brazil.
Stink bugs (Hemiptera, Pentatomidae) are well known by the strong odor of the defensive compounds they release, which can mediate intra- and/or interspecific interactions. Pentatomidae is one of the largest families of Heteroptera and includes many phytophagous species that are considered pests of various crops, as well as predatory species that provide biological control. Against this background, numerous research papers in Chemical Ecology have focused on communication within this group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!