Machine learning for the prediction of pathologic pneumatosis intestinalis.

Surgery

Departments of Radiology, Biomedical Informatics, and Bioengineering, University of Pittsburgh, PA. Electronic address:

Published: September 2021

Background: The radiographic finding of pneumatosis intestinalis can indicate a spectrum of underlying processes ranging from a benign finding to a life-threatening condition. Although radiographic pneumatosis intestinalis is relatively common, there is no validated clinical tool to guide surgical management.

Methods: Using a retrospective cohort of 300 pneumatosis intestinalis cases from a single institution, we developed 3 machine learning models for 2 clinical tasks: (1) the distinction of benign from pathologic pneumatosis intestinalis cases and (2) the determination of patients who would benefit from an operation. The 3 models are (1) an imaging model based on radiomic features extracted from computed tomography scans, (2) a clinical model based on clinical variables, and (3) a combination model using both the imaging and clinical variables.

Results: The combination model achieves an area under the curve of 0.91 (confidence interval: 0.87-0.94) for task I and an area under the curve of 0.84 (confidence interval: 0.79-0.88) for task II. The combination model significantly (P < .05) outperforms the imaging model and the clinical model for both tasks. The imaging model achieves an area under the curve of 0.72 (confidence interval: 0.57-0.87) for task I and 0.68 (confidence interval: 0.61-0.74) for task II. The clinical model achieves an area under the curve of 0.87 (confidence interval: 0.83-0.91) for task I and 0.76 (confidence interval: 0.70-0.81) for task II.

Conclusion: This study suggests that combined radiographic and clinical features can identify pathologic pneumatosis intestinalis and aid in patient selection for surgery. This tool may better inform the surgical decision-making process for patients with pneumatosis intestinalis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405549PMC
http://dx.doi.org/10.1016/j.surg.2021.03.049DOI Listing

Publication Analysis

Top Keywords

pneumatosis intestinalis
28
confidence interval
24
area curve
16
pathologic pneumatosis
12
imaging model
12
clinical model
12
combination model
12
model achieves
12
achieves area
12
model
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!