Metabolites of bovine-associated non-aureus staphylococci influence expression of Staphylococcus aureus agr-related genes in vitro.

Vet Res

M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Published: April 2021

Communications via quorum sensing (QS) between non-aureus staphylococci (NAS) and Staphylococcus (S.) aureus in the bovine mammary gland remains largely unexplored. We determined whether 34 S. chromogenes, 11 S. epidermidis, and 14 S. simulans isolates originating from bovine milk samples and teat apices were able to regulate the QS of S. aureus, and if so, how in vitro growth inhibition of S. aureus by NAS, or NAS metabolites, or NAS cells themselves play a role in this process. In co-culture with S. aureus we observed that these 3 NAS species in general downregulated the expression of rnaIII, the effector molecule of the QS system, but this effect was more pronounced in S. chromogenes and S. simulans isolates than in S. epidermidis isolates. In vitro growth inhibition of S. aureus by NAS resulted in a small underestimation of the downregulating effect of NAS on rnaIII expression of S. aureus. Additionally, the culture supernatant of these NAS isolates and supernatant treated with proteinase K expressed greater regulatory activity over S. aureus virulence genes rnaIII, hla, and spa than washed NAS cells suspended in sterile water. These microbial interactions may influence S. aureus virulence and pathogenesis within the host. Isolation and identification of NAS metabolites affecting the QS system of S. aureus might help to develop alternative strategies for treatment and control of S. aureus mastitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082617PMC
http://dx.doi.org/10.1186/s13567-021-00933-xDOI Listing

Publication Analysis

Top Keywords

aureus
11
nas
10
non-aureus staphylococci
8
staphylococcus aureus
8
simulans isolates
8
vitro growth
8
growth inhibition
8
inhibition aureus
8
aureus nas
8
nas metabolites
8

Similar Publications

In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz.

View Article and Find Full Text PDF

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

Bacterial infections commonly complicate cutaneous leishmaniasis (CL), worsening the disease and delaying healing. Despite this, there is a gap in research concerning the characteristics of pathogenic microorganisms associated in CL patients. This study aims to identify bacterial isolates and drug susceptibility patterns in CL patients.

View Article and Find Full Text PDF

Bovine mastitis is the most widespread disease that causes financial loss in the dairy industry. Staphylococcus aureus is a well-researched multidrug-resistant opportunistic bacterium that is frequently linked to subclinical mastitis and causes significant economic losses. A further problem in the management of S.

View Article and Find Full Text PDF

For any organism, survival is enhanced by the ability to sense and respond to threats in advance. For bacteria, danger sensing among kin cells has been observed, but the presence or impacts of general danger signals are poorly understood. Here we show that different bacterial species use exogenous peptidoglycan fragments, which are released by nearby kin or non-kin cell lysis, as a general danger signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!