Background: Whole-genome sequencing has shown that the Mycobacterium tuberculosis infection process can be more heterogeneous than previously thought. Compartmentalized infections, exogenous reinfections, and microevolution are manifestations of this clonal complexity. The analysis of the mechanisms causing the microevolution -the genetic variability of M. tuberculosis at short time scales- of a parental strain into clonal variants with a patient is a relevant issue that has not been yet completely addressed. To our knowledge, a whole genome sequence microevolution analysis in a single patient with inadequate adherence to treatment has not been previously reported.
Case Presentation: In this work, we applied whole genome sequencing analysis for a more in-depth analysis of the microevolution of a parental Mycobacterium tuberculosis strain into clonal variants within a patient with poor treatment compliance in Argentina. We analyzed the whole-genome sequence of 8 consecutive Mycobacterium tuberculosis isolates obtained from a patient within 57-months of intermittent therapy. Nineteen mutations (9 short-term, 10 fixed variants) emerged, most of them associated with drug resistance. The first isolate was already resistant to isoniazid, rifampicin, and streptomycin, thereafter the strain developed resistance to fluoroquinolones and pyrazinamide. Surprisingly, isolates remained susceptible to the pro-drug ethionamide after acquiring a frameshift mutation in ethA, a gene required for its activation. We also found a novel variant, (T-54G), in the 5' untranslated region of whiB7 (T-54G), a region allegedly related to kanamycin resistance. Notably, discrepancies between canonical and phage-based susceptibility testing to kanamycin were previously found for the isolate harboring this mutation. In our patient, microevolution was mainly driven by drug selective pressure. Rare short-term mutations fixed together with resistance-conferring mutations during therapy.
Conclusions: This report highlights the relevance of whole-genome sequencing analysis in the clinic for characterization of pre-XDR and MDR resistance profile, particularly in patients with incomplete and/or intermittent treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082761 | PMC |
http://dx.doi.org/10.1186/s12879-021-06069-9 | DOI Listing |
Antimicrob Agents Chemother
January 2025
Division of Infectious Diseases, Department of Medicine, University of Texas at Tyler School of Medicine, Tyler, Texas, USA.
The impact of heteroresistance on tuberculosis (TB) treatment outcomes is unclear, as is the role of different rifampin and isoniazid exposures on developing resistance mutations. Hollow fiber system model of TB (HFS-TB) units were inoculated with drug-susceptible () and treated with isoniazid and rifampin exposure identified in a clinical trial as leading to treatment failure and acquired drug resistance. Systems were sampled for drug concentration measurements, estimation of total and drug-resistant , and small molecule overlapping reads (SMOR) analysis for the detection of heteroresistance.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Bandung 45363, Indonesia.
Background: Certain micronutrient levels have been associated with the risk of developing TB disease. We explored the possible association of selected at-risk micronutrient levels with the development of Mycobacterium tuberculosis (M.tb) infection.
View Article and Find Full Text PDFFront Antibiot
January 2024
Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR.
View Article and Find Full Text PDFIntroduction Tuberculosis (TB) is an infectious disease caused by . Various studies have established an association between diabetes mellitus (DM) and pulmonary TB. This study describes the prevalence of DM and its predictors in smear-positive TB patients.
View Article and Find Full Text PDFFront Antibiot
June 2024
Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Freiburg, Germany.
Rifamycin and its derivatives are natural products that belong to the class of antibiotic-active polyketides and have significant therapeutic relevance within the therapy scheme of tuberculosis, a worldwide infectious disease caused by . Improving the oral bioavailability of rifamycin B was achieved through semisynthetic modifications, leading to clinically effective derivatives such as rifampicin. Genetic manipulation of the rifamycin polyketide synthase gene cluster responsible for the production of rifamycin B in the strain S699 represents a promising tool to generate new rifamycins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!