Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
More and more biologists and bioinformaticians turn to machine learning to analyze large amounts of data. In this context, it is crucial to understand which is the most suitable data analysis pipeline for achieving reliable results. This process may be challenging, due to a variety of factors, the most crucial ones being the data type and the general goal of the analysis (e.g., explorative or predictive). Life science data sets require further consideration as they often contain measures with a low signal-to-noise ratio, high-dimensional observations, and relatively few samples. In this complex setting, regularization, which can be defined as the introduction of additional information to solve an ill-posed problem, is the tool of choice to obtain robust models. Different regularization practices may be used depending both on characteristics of the data and of the question asked, and different choices may lead to different results. In this article, we provide a comprehensive description of the impact and importance of regularization techniques in life science studies. In particular, we provide an intuition of what regularization is and of the different ways it can be implemented and exploited. We propose four general life sciences problems in which regularization is fundamental and should be exploited for robustness. For each of these large families of problems, we enumerate different techniques as well as examples and case studies. Lastly, we provide a unified view of how to approach each data type with various regularization techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8968832 | PMC |
http://dx.doi.org/10.1089/cmb.2019.0371 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!