Steel designs with superior mechanical properties have been urgently needed in automotive industries to achieve energy conservation, increase safety, and decrease weight. In this study, the aging process is employed to enhance the yield strength (YS) by tailoring the distribution of V-rich precipitates and to improve ductility by producing high volume fractions of recrystallized ferrite in cold-rolled medium-Mn steel. A reliable method to acquire ultra-high strength (1.0-1.5 GPa), together with ductility (>40%), is proposed via utilizing non-recrystallized austenite and recrystallized ferrite. Similarly to conventional medium-Mn steels, the TRIP effect, along with the mild TWIP effect, is responsible for the main deformation mechanisms during tensile testing. However, the coupled influence of precipitation strengthening, grain refinement strengthening, and dislocation strengthening contributes to an increase in YS. The studied steel, aged at 650 °C for 5 h, demonstrates a YS of 1078 MPa, ultimate tensile strength (UTS) of 1438 MPa, and tensile elongation (TE) of 30%. The studied steel aged at 650 °C for 10 h shows a UTS of 1306 MPa and TE of 42%, resulting in the best product in terms of of UTS and TE, at 55 GPa·%. Such a value surpasses that of the previously reported medium-Mn steels containing equal mass fractions of various microalloying elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123636 | PMC |
http://dx.doi.org/10.3390/ma14092233 | DOI Listing |
Nanotechnology
January 2025
Nanjing University of Posts and Telecommunications, Nanjing University of Posts and Telecommunications, Kuala Lumpur, Selangor, 50603, MALAYSIA.
Two-dimensional Transition Metal Dichalcogenides (2D TMDs) have garnered significant attention in the field of materials science due to their remarkable electronic and optoelectronic properties, including high carrier mobility and tunable band gaps. Despite the extensive research on various TMDs, there remains a notable gap in understanding the synthesis techniques and their implications for the practical application of monolayer tungsten disulfide (WS2) in optoelectronic devices. This gap is critical, as the successful integration of WS2 into commercial technologies hinges on the development of reliable synthesis methods that ensure high quality and uniformity of the material.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
3School of Mechanical Engineering, Yanshan University, Hebei, China.
: This study aimed to explore how the microarchitectural features of lacunae and perilacunar zones impact the biomechanics of microdamage accumulation in cortical bone, crucial for understanding bone disorders' pathogenesis and developing preventive measures. : Utilizing the phase field finite element method, the study analyzed three bone unit models with varying microarchitecture: one without lacunae, one with lacunae and one including perilacunar zones, to assess their effects on cortical bone's biomechanical properties. : The presence of lacunae was found to increase microcrack initiation risk, acting as nucleation points and accelerating microcrack propagation.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
2AGH University of Krakow, Faculty of Materials Science and Ceramics, Kraków, Poland.
Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
1School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
: Brain tissue immersed in cerebrospinal fluid often exhibits complex mechanical behaviour, especially the nonlinear stress- strain and rate-dependent responses. Despite extensive research into its material properties, the impact of solution environments on the mechanical behaviour of brain tissue remains limited. This knowledge gap affects the biofidelity of head modelling.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea.
Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!