Enzymatic biosensors enjoy commercial success and are the subject of continued research efforts to widen their range of practical application. For these biosensors to reach their full potential, their selectivity challenges need to be addressed by comprehensive, solid approaches. This review discusses the status of enzymatic biosensors in achieving accurate and selective measurements via direct biocatalytic and inhibition-based detection, with a focus on electrochemical enzyme biosensors. Examples of practical solutions for tackling the activity and selectivity problems and preventing interferences from co-existing electroactive compounds in the samples are provided such as the use of permselective membranes, sentinel sensors and coupled multi-enzyme systems. The effect of activators, inhibitors or enzymatic substrates are also addressed by coupled enzymatic reactions and multi-sensor arrays combined with data interpretation via chemometrics. In addition to these more traditional approaches, the review discusses some ingenious recent approaches, detailing also on possible solutions involving the use of nanomaterials to ensuring the biosensors' selectivity. Overall, the examples presented illustrate the various tools available when developing enzyme biosensors for new applications and stress the necessity to more comprehensively investigate their selectivity and validate the biosensors versus standard analytical methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123588PMC
http://dx.doi.org/10.3390/s21093038DOI Listing

Publication Analysis

Top Keywords

enzyme biosensors
12
enzymatic biosensors
8
approaches review
8
review discusses
8
biosensors
7
addressing selectivity
4
selectivity enzyme
4
biosensors solutions
4
solutions perspectives
4
enzymatic
4

Similar Publications

Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.

View Article and Find Full Text PDF

CellREADR: An ADAR-based RNA sensor-actuator device.

Methods Enzymol

January 2025

Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:

RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.

View Article and Find Full Text PDF

The flexibility and programmability of CRISPR-Cas technology have made it one of the most popular tools for biomarker diagnostics and gene regulation. Especially, the CRISPR-Cas12 system has shown exceptional clinical diagnosis and gene editing capabilities. Here, we discovered that although the top loop of the 5' handle of guide RNA can undergo central splitting, deactivating CRISPR-Cas12a, the segments can dramatically restore CRISPR function through nucleic acid self-assembly or interactions with small molecules and aptamers.

View Article and Find Full Text PDF

Proteins can be rapidly prototyped with cell-free expression (CFE) but in most cases there is a lack of probes or assays to measure their function directly in the cell lysate, thereby limiting the throughput of these screens. Increased throughput is needed to build standardized, sequence to function data sets to feed machine learning guided protein optimization. Herein, we describe the use of fluorescent single-walled carbon nanotubes (SWCNT) as effective probes for measuring protease activity directly in cell-free lysate.

View Article and Find Full Text PDF

A genetically encoded fluorescent biosensor for sensitive detection of cellular c-di-GMP levels in .

Front Chem

January 2025

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China.

Cyclic di-guanosine monophosphate (c-di-GMP) acts as a second messenger regulating bacterial behaviors including cell cycling, biofilm formation, adhesion, and virulence. Monitoring c-di-GMP levels is crucial for understanding these processes and designing inhibitors to combat biofilm-related antibiotic resistance. Here, we developed a genetically encoded biosensor, cdiGEBS, based on the transcriptional activity of the c-di-GMP-responsive transcription factor MrkH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!