Infection is one of several factors that can delay normal wound healing. Antibacterial wound dressings can therefore promote normal wound healing. In this study, we prepared an antibacterial wound dressing, consisting of visible light-cured methacrylated collagen (ColMA) hydrogel and a 2-hydroxypropyl-beta-cyclodextrin (HP-β-CD)/triclosan (TCS) complex (CD-ic-TCS), and evaluated its wound healing effects in vivo. The H NMR spectra of ColMA and CD-ic-TCS revealed characteristic peaks at 1.73, 5.55, 5.94, 6.43, 6.64, 6.84, 6.95, 7.31, and 7.55 ppm, indicating successful preparation of the two material types. In addition, ultraviolet-visible (UV-vis) spectroscopy proved an inclusion complex formation between HP-β-CD and TCS, judging by a unique peak observed at 280 cm. Furthermore, ColMA/CD-ic-TCS exhibited an interconnected porous structure, controlled release of TCS, good biocompatibility, and antibacterial activity. By in vivo animal testing, we found that ColMA/CD-ic-TCS had a superior wound healing capacity, compared to the other hydrocolloids evaluated, due to synergistic interaction between ColMA and CD-ic-TCS. Together, our findings indicate that ColMA/CD-ic-TCS has a clinical potential as an antibacterial wound dressing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125271 | PMC |
http://dx.doi.org/10.3390/ma14092270 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!