Advances in understanding tissue regenerative mechanisms require the characterization of in vivo macrophages as those play a fundamental role in this process. This characterization can be approached using the immuno-fluorescence method with widely studied and used pan-markers such as CD206 protein. This work investigated CD206 expression in an irradiated-muscle pig model using three different antibodies. Surprisingly, the expression pattern during immunodetection differed depending on the antibody origin and could give some false results. False results are rarely described in the literature, but this information is essential for scientists who need to characterize macrophages. In this context, we showed that in situ hybridization coupled with hybridization-chain-reaction detection (HCR) is an excellent alternative method to detect macrophages in situ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145419 | PMC |
http://dx.doi.org/10.3390/genes12050649 | DOI Listing |
Biomaterials
January 2025
School of Life Science, Chongqing University, Chongqing, 400044, China. Electronic address:
In-situ tumor vaccination remains challenging due to difficulties in the exposure and presentation of tumor-associated neoantigens (TANs). In view of the central role of lipid metabolism in cell fate determination and tumor-immune cell communication, here we report a photo-controlled lipid metabolism nanoregulator (PLMN) to achieve robust in-situ adjuvant-free vaccination, which is constructed through hierarchically integrating photothermal-inducible arachidonate 15-lipoxygenase (ALOX15)-expressing plasmids, cypate and FIN56 into cationic liposomes. Near-infrared light (NIR) stimulation triggers on-demand ALOX15 editing and causes excessive accumulation of downstream pro-ferroptosis lipid metabolites.
View Article and Find Full Text PDFSmall
January 2025
Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang, 110042, China.
Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
Sonodynamic therapy (SDT), which is non-invasive and controllable has the potential to treat triple-negative breast cancer (TNBC). However, the hypoxia and immunosuppressive tumor microenvironment (TME) often block the production of reactive oxygen species and the induction of SDT-activated immunogenic cell death, thus limiting the activation of adaptive immune responses. To alleviate these challenges, we proposed the development of a multifunctional biomimetic nanoplatform (mTSeIR), which was designed with diselenide-conjugated sonosensitizers and tirapazamine (TPZ), encapsulated within M1 macrophage membrane.
View Article and Find Full Text PDFVet Comp Oncol
January 2025
Histopathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy.
Canine oral melanoma (OM) exhibits poor prognosis and limited treatment options. The success of immune checkpoint inhibitors (ICIs) in human melanoma has driven interest in similar therapeutic approaches in the dog, although the immunosuppressive mechanisms adopted by canine OM remain unclear. This study aimed to evaluate the expression of the immune checkpoints PD-1/PD-L1 and CTLA-4 by RNAscope in situ hybridization (ISH) in canine OM, to investigate their expression pattern and explore their potential role in melanoma progression.
View Article and Find Full Text PDFJ Hist Dent
January 2025
Professor Emeritus Texas A&M University, College of Dentistry, Dallas, Texas, Distinguished Adjunct Professor, Department of Cariology, Saveetha Dental College and Hospitals Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, India.
Historically the physiological or pathological loss of tooth structure in situ was deemed to be due to the 'absorption' of tooth structure due to the removal of the inorganic components of dentin and cementum by osteoclastic (dentinoclastic) cellular activity. This nomenclature and the activity that it represented was considered by almost all dental researchers and clinicians in the 1800s and early 1900s. The shift to the concept of 'resorption' occurred in the first half of the 20th century, with clarity emanating from significant research activity on the pathology of osseous structures, origin of osteoclastic cell types, and the function of periodontal ligament cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!