Genome-Wide Investigation of the Gene Family in Expression Profiles during Development and Stress.

Int J Mol Sci

Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.

Published: April 2021

AI Article Synopsis

  • Poplar trees are widely used in reforestation, but their growth is influenced by environmental conditions and their ability to withstand various stresses.
  • The study focuses on analyzing the whole genome of poplar to identify genes related to drought, mechanical damage, insect feeding, and hormone responses, discovering four specific genes in the process.
  • Bioinformatics and qRT-PCR methods were utilized to examine gene structure and expression patterns, revealing certain genes’ potential roles in stress response, which could aid future research on enhancing stress resistance in forest trees.

Article Abstract

Poplar are planted extensively in reforestation and afforestation. However, their successful establishment largely depends on the environmental conditions of the newly established plantation and their resistance to abiotic as well as biotic stresses. NF-X1, a widespread transcription factor in plants, plays an irreplaceable role in plant growth, development, and stress tolerance. Although the whole genome sequence of has been published for a long time, little is known about the genes in poplar, especially those related to drought stress, mechanical damage, insect feeding, and hormone response at the whole genome level. In this study, whole genome analysis of the poplar family was performed, and 4 genes were identified. Then, bioinformatics analysis and qRT-PCR were applied to analyze the gene structure, phylogeny, chromosomal localization, gene replication, Cis-elements, and expression patterns of . Sequence analysis revealed that one-quarter of the genes did not contain introns. Phylogenetic analysis revealed that all genes were split into three subfamilies. The number of two pairs of segmented replication genes were detected in poplars. Cis-acting element analysis identified a large number of elements of growth and development and stress-related elements on the promoters of different members. In addition, some could be significantly induced by polyethylene glycol (PEG) and abscisic acid (ABA), thus revealing their potential role in regulating stress response. Comprehensive analysis is helpful in selecting candidate genes for the follow-up study of the biological function, and molecular genetic progress of stress resistance in forest trees provides genetic resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8124260PMC
http://dx.doi.org/10.3390/ijms22094664DOI Listing

Publication Analysis

Top Keywords

development stress
8
growth development
8
analysis revealed
8
genes
6
analysis
6
stress
5
genome-wide investigation
4
investigation gene
4
gene family
4
family expression
4

Similar Publications

Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Proc Natl Acad Sci U S A

January 2025

Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .

View Article and Find Full Text PDF

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

Understanding the interplay between biology and mechanics in tissue architecture is challenging, particularly in terms of 3D tissue organization. Addressing this challenge requires a biological model enabling observations at multiple levels from cell to tissue, as well as theoretical and computational approaches enabling the generation of a synthetic model that is relevant to the biological model and allowing for investigation of the mechanical stresses experienced by the tissue. Using a monolayer human colon epithelium organoid as a biological model, freely available tools (Fiji, Cellpose, Napari, Morphonet, or Tyssue library), and the commercially available Abaqus FEM solver, we combined vertex and FEM approaches to generate a comprehensive viscoelastic finite element model of the human colon organoid and demonstrated its flexibility.

View Article and Find Full Text PDF

Background: Financial toxicity is the detrimental impact of health care costs that must be mitigated to achieve universal health coverage. Catastrophic health expenditure (CHE) is widely used to measure financial toxicity but does not capture patient perspectives of unaffordable health care costs. Financial hardship (FH), a patient-reported outcome measure, is currently underutilized but may be an important adjunct metric.

View Article and Find Full Text PDF

Supramolecular Engineering of Nanoceria for Management and Amelioration of Age-Related Macular Degeneration via the Two-Level Blocking of Oxidative Stress and Inflammation.

Adv Sci (Weinh)

January 2025

Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China.

Age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the global leading cause of irreversible blindness. Current first-line therapeutics, vascular endothelial growth factor (VEGF) antagonists, often yield incomplete and suboptimal vision improvement, necessitating the exploration of novel and efficacious therapeutic approaches. Herein, a supramolecular engineering strategy to construct moringin (MOR) loaded α-cyclodextrin (α-CD) coated nanoceria (M@CCNP) is constructed, where the hydroxy and newly formed carbonyl groups of α-CD interact with the nanoceria surface via O─Ce conjunction and the isothiocyanate group of MOR inserts deeply into the α-CD cavity via host-guest interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!