New substituted azomethines of benzanthrone with heterocyclic substituents were synthesized by condensation reaction of 3-aminobenzo[de]anthracen-7-one with appropriate aromatic aldehydes. The resulting imines were reduced with sodium borohydride to the corresponding amines, the luminescence of which is more pronounced in comparison with the initial azomethines. The novel benzanthrone derivatives were characterized by NMR, IR, MS, UV/Vis, and fluorescence spectroscopy. The structure of three dyes was studied by the X-ray single crystal structure analysis. The solvent effect on photophysical behaviors of synthesized imines and amines was investigated. The obtained compounds absorb at 420-525 nm, have relatively large Stokes shifts (up to 150 nm in ethanol), and emit at 500-660 nm. The results testify that emission of the studied compounds is sensitive to the solvent polarity, exhibiting negative fluorosolvatochromism for the synthesized azomethines and positive fluorosolvatochromism for the obtained amines. The results obtained indicate that the synthesized compounds are promising as luminescent dyes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125169 | PMC |
http://dx.doi.org/10.3390/molecules26092570 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
October 2024
Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.
Two new zinc(II) complexes, tri-ethyl-ammonium di-chlorido-[2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-olato]zinc(II), (CHN){Zn(CHNO)Cl] (), and bis-(tri-ethyl-ammonium) {2,2'-[1,4-phenyl-enebis(nitrilo-methyl-idyne)]diphenolato}bis-[di-chlorido-zinc(II)], (CHN)[Zn(CHNO)Cl] (), were synthesized and their structures were determined using ESI-MS spectrometry, H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-ol () and ,'-bis-(2-hy-droxy-benzyl-idene)benzene-1,4-di-amine () were deprotonated by tri-ethyl-amine, forming the counter-ion EtNH, which inter-acts an N-H⋯O hydrogen bond with the ligand. The Zn atoms have a distorted trigonal-pyramidal () and distorted tetra-hedral () geometries with a coord-ination number of four, coordinating with the ligands N and O atoms.
View Article and Find Full Text PDFJ Inorg Biochem
December 2024
Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary. Electronic address:
Schiff bases derived from aminoguanidine are extensively investigated for their structural versatility. The tridentate 2-formylpyridine guanylhydrazones act as analogues of 2-formyl or 2-acetylpyridine thiosemicarbazones, where the thioamide unit is replaced by the guanidyl group. Six derivatives of 2-formylpyridine guanylhydrazone were synthesized and their proton dissociation and complex formation processes with Cu(II), Fe(II) and Fe(III) ions were studied using pH-potentiometry, UV-visible, NMR and electron paramagnetic resonance spectroscopic methods.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
Covalent organic frameworks (COFs) are a class of highly efficient photocatalytic organic semiconductor materials, which have been developed for the design of photoactive nanozymes. Nitrogen (N)-heterocycles could effectively improve their photocatalytic activity of COFs. However, the systematic exploration of photoactive nanozymes based on N-containing COFs is still lacking.
View Article and Find Full Text PDFMolecules
October 2024
Organic and Pharmaceutical Chemistry Department, Ulyanov Chuvash State University, Moskovsky Prospect, 15, 428015 Cheboksary, Russia.
The significant synthetic potential and reactivity of tetracyanoethylene (TCNE) have captured the interest of numerous chemical communities. One of the most promising, readily achievable, yet least explored pathways for the reactivity of TCNE involves its interaction with arylamines. Typically, the reaction proceeds via tricyanovinylation (TCV); however, deviations from the standard chemical process have been observed in some instances.
View Article and Find Full Text PDFMolecules
September 2024
Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!