The rise of small-scale and localized economic activities in low- and middle-income countries (LMICs) has led to increased exposures to contaminants associated with these processes and the potential for resulting adverse health effects in exposed communities. Risk assessment is the process of building models to predict the probability of adverse outcomes based on concentration-response functions and exposure scenarios for individual contaminants, while epidemiology uses statistical methods to explore associations between potential exposures and observed health outcomes. Neither approach by itself is practical or sufficient for evaluating the magnitude of exposures and health impacts associated with land-based pollution in LMICs. Here we propose a more pragmatic framework for designing representative studies, including uniform sampling guidelines and household surveys, that draws from both methodologies to better support community health impact analyses associated with land-based pollution sources in LMICs. Our primary goal is to explicitly link environmental contamination from land-based pollution associated with specific localized economic activities to community exposures and health outcomes at the household level. The proposed framework was applied to the following three types of industries that are now widespread in many LMICs: artisanal scale gold mining (ASGM), used lead-acid battery recycling (ULAB), and small tanning facilities. For each activity, we develop a generalized conceptual site model (CSM) that describes qualitative linkages from chemical releases or discharges, environmental fate and transport mechanisms, exposure pathways and routes, populations at risk, and health outcomes. This upfront information, which is often overlooked, is essential for delineating the contaminant zone of influence in a community and identifying relevant households for study. We also recommend cost-effective methods for use in LMICs related to environmental sampling, biological monitoring, survey questionnaires, and health outcome measurements at contaminated and unexposed reference sites. Future study designs based on this framework will facilitate consistent, comparable, and standardized community exposure, risk, and health impact assessments for land-based pollution in LMICs. The results of these studies can also support economic burden analyses and risk management decision-making around site cleanup, risk mitigation, and public health education.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125743PMC
http://dx.doi.org/10.3390/ijerph18094676DOI Listing

Publication Analysis

Top Keywords

land-based pollution
20
health outcomes
12
health
10
health impacts
8
low- middle-income
8
middle-income countries
8
localized economic
8
economic activities
8
exposures health
8
associated land-based
8

Similar Publications

Microplastic (MP) contamination poses significant risks to ecosystems and human health. However, the absence of standardized protocols, detailed polymer identification, and sources identification hinders the development of targeted mitigation strategies, particularly in developing nations. There is a scarcity of comprehensive data on MP distribution, sources, and transport mechanisms in freshwater environments.

View Article and Find Full Text PDF

Coastal ecosystems are increasingly threatened by the accumulation of marine litter globally. Limited data availability along India's eastern coast hinders targeted mitigation efforts. This study assesses coastal litter along Visakhapatnam, a smart city on India's eastern coast, using the NOAA shoreline debris protocol.

View Article and Find Full Text PDF

The COVID-19 pandemic and subsequent lockdown measures significantly impacted various sectors, including coastal environments. While restrictions led to temporary improvements in air quality, their effects on coastal waters remained understudy. This research conducted four cruises along the east coast of India during pre- and post-COVID-19 lockdown to assess the water quality changes.

View Article and Find Full Text PDF

In recent years, it has become clear that plastic pollution poses a significant threat to aquatic environments and human health. Rivers act as entry points for land-based plastic waste, while a certain fraction of entrained plastics is carried into marine environments. As such, the accurate modelling of plastic transport processes in riverine systems plays a crucial role in developing adequate remediation strategies.

View Article and Find Full Text PDF

Driving factors of ship-induced nitrogen dioxide concentrations over coastal seas of China: Implications for ship emission management.

J Environ Manage

December 2024

College of Management, Shenzhen University, Shenzhen 518073, China; Center for Marine Development,Macau University of Science and Technology, Macao, 999078, China; Shenzhen International Maritime Institute, Shenzhen 518081, China. Electronic address:

Ships generate large amounts of air pollutants, including nitrogen dioxide (NO) that profoundly impacts air quality and poses serious threats to human health. It is crucial to understand the dynamics and drivers of ship-induced NO concentrations in China to support the prevention and control of fine particulate matter (PM) and ozone (O) pollution. This study built Generalized Additive Models (GAMs) to reveal the nonlinear effects of meteorological factors and ship emissions on ship-induced NO concentrations based on the Tropospheric Monitoring Instrument (TROPOMI) satellite data, AIS based emission model and meteorological data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!