Conservative Quantization of Covariance Matrices with Applications to Decentralized Information Fusion.

Sensors (Basel)

Intelligent Sensor-Actuator-Systems Laboratory (ISAS), Institute of Anthropomatics and Robotics (IAR), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.

Published: April 2021

Information fusion in networked systems poses challenges with respect to both theory and implementation. Limited available bandwidth can become a bottleneck when high-dimensional estimates and associated error covariance matrices need to be transmitted. Compression of estimates and covariance matrices can endanger desirable properties like unbiasedness and may lead to unreliable fusion results. In this work, quantization methods for estimates and covariance matrices are presented and their usage with the optimal fusion formulas and covariance intersection is demonstrated. The proposed quantization methods significantly reduce the bandwidth required for data transmission while retaining unbiasedness and conservativeness of the considered fusion methods. Their performance is evaluated using simulations, showing their effectiveness even in the case of substantial data reduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8125543PMC
http://dx.doi.org/10.3390/s21093059DOI Listing

Publication Analysis

Top Keywords

covariance matrices
16
estimates covariance
8
quantization methods
8
covariance
5
fusion
5
conservative quantization
4
quantization covariance
4
matrices
4
matrices applications
4
applications decentralized
4

Similar Publications

Background: Informal caregivers of individuals with acquired brain injury (ABI) often lack adequate preparedness for caregiving. Caregiver burden may reduce preparedness, with anxiety potentially mediating this relationship. However, these associations remain unclear.

View Article and Find Full Text PDF

Adaptive focusing for wideband beamforming in multipath environments.

J Acoust Soc Am

January 2025

Electrical and Computer Engineering, Duke University, Durham, North Carolina 27704, USA.

This paper addresses achieving the high time-bandwidth product necessary for low signal-to-noise ratio (SNR) target detection and localization in complex multipath environments. Time bandwidth product is often limited by dynamic environments and platform maneuvers. This paper introduces data-driven wideband focusing methods for passive sonar that optimize parameterized unitary matrices to align signal subspaces across the frequency band without relying on wave propagation models which are subject to mismatch in complex multipath environments.

View Article and Find Full Text PDF

: Alzheimer's disease is a progressive neurological condition marked by a decline in cognitive abilities. Early diagnosis is crucial but challenging due to overlapping symptoms among impairment stages, necessitating non-invasive, reliable diagnostic tools. : We applied information geometry and manifold learning to analyze grayscale MRI scans classified into No Impairment, Very Mild, Mild, and Moderate Impairment.

View Article and Find Full Text PDF

Objective: To present a remodeling of the electroretinogram waveform using a covariance matrix to identify regions of interest and distinction between a control and attention deficit/hyperactivity disorder (ADHD) group. Electroretinograms were recorded in n = 25 ADHD (16 male; age 11.9 ± 2.

View Article and Find Full Text PDF

As lineages become separated in time, they are expected to accumulate mutational (or developmental-genetic) differences that influence the macroevolutionary trajectories of those lineages even under similar environmental conditions. Here, we compare the dynamics of phenotypic evolution in radiations of scincid lizards from Australia and Madagascar that are separated by more than 100 million years of independent evolution and show rampant phenotypic parallelism. We collected linear measurements of the skull, limbs, and limb girdles from micro-CT scans of 94 Australian and 29 Malagasy species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!