Functionalization and Characterization of Silicon Nanowires for Sensing Applications: A Review.

Nanomaterials (Basel)

Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France.

Published: April 2021

Silicon nanowires are attractive materials from the point of view of their electrical properties or high surface-to-volume ratio, which makes them interesting for sensing applications. However, they can achieve a better performance by adjusting their surface properties with organic/inorganic compounds. This review gives an overview of the main techniques used to modify silicon nanowire surfaces as well as characterization techniques. A comparison was performed with the functionalization method developed, and some applications of modified silicon nanowires and their advantages on those non-modified are subsequently presented. In the final words, the future opportunities of functionalized silicon nanowires for chipless tag radio frequency identification (RFID) have been depicted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8070586PMC
http://dx.doi.org/10.3390/nano11040999DOI Listing

Publication Analysis

Top Keywords

silicon nanowires
16
sensing applications
8
silicon
5
functionalization characterization
4
characterization silicon
4
nanowires
4
nanowires sensing
4
applications review
4
review silicon
4
nanowires attractive
4

Similar Publications

This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.

View Article and Find Full Text PDF

The development of an efficient and durable photoelectrode is critical for achieving large-scale applications in photoelectrochemical water splitting. Here, we report a unique photoelectrode composed of reconfigured gallium nitride nanowire-on-silicon wafer loaded with Au nanoparticles as cocatalyst that achieved an impressive applied bias photon-to-current efficiency of 10.36% under AM 1.

View Article and Find Full Text PDF

Silicon nanowires (Si NWs) have attracted considerable interest owing to their distinctive properties, which render them promising candidates for a wide range of advanced applications in electronics, photonics, energy storage, and sensing. However, challenges in achieving large-scale production, high uniformity, and shape control limit their practical use. This study presents a novel fabrication approach combining nanoimprint lithography, nanotransfer printing, and metal-assisted chemical etching to produce highly uniform and shape-controlled Si NW arrays.

View Article and Find Full Text PDF

We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.

View Article and Find Full Text PDF

Rapid and sensitive detection of virus-related antigens and antibodies is crucial for controlling sudden seasonal epidemics and monitoring neutralizing antibody levels after vaccination. However, conventional detection methods still face challenges related to compatibility with rapid, highly sensitive, and compact detection apparatus. In this work, we developed a Si nanowire (SiNW)-based field-effect biosensor by precisely controlling the process conditions to achieve the required electrical properties via complementary metal-oxide-semiconductor (CMOS)-compatible nanofabrication processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!