Light olefins are key components of modern chemical industry and are feedstocks for the production of many commodity chemicals widely used in our daily life. It would be of great economic significance to convert light alkanes, produced during the refining of crude oil or extracted during the processing of natural gas selectively to value-added products, such as light alkenes, aromatic hydrocarbons, etc., through catalytic dehydrogenation. Among various catalysts developed, Ga-modified ZSM-5-based catalysts exhibit superior catalytic performance and stability in dehydrogenation of light alkanes. In this mini review, we summarize the progress on synthesis and application of Ga-modified ZSM-5 as catalysts in dehydrogenation of light alkanes to olefins, and the dehydroaromatization to aromatics in the past two decades, as well as the discussions on in-situ formation and evolution of reactive Ga species as catalytic centers and the reaction mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069487PMC
http://dx.doi.org/10.3390/molecules26082234DOI Listing

Publication Analysis

Top Keywords

light alkanes
12
dehydrogenation light
8
light
6
advances gallium-modified
4
gallium-modified zsm-5
4
zsm-5 conversion
4
conversion light
4
light hydrocarbons
4
hydrocarbons light
4
light olefins
4

Similar Publications

Cellulose nanofiber-reinforced antimicrobial and antioxidant multifunctional hydrogel with self-healing, adhesion for enhanced wound healing.

Carbohydr Polym

March 2025

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.

Current conventional wound dressings used for wound healing are often characterized by restricted bioactivity and devoid of multifunctionality resulting in suboptimal treatment and prolonged healing. Despite recent advances, the simultaneous incorporation of excellent flexibility, good mechanical performance, self-healing, bioactivity, and adhesion properties into the dressings without complicating their efficacy while maintaining simple synthesis remains a grand challenge. Herein, we effectively synthesized hybrid hydrogels of cellulose nanofiber (CNF), polyvinyl alcohol (PVA), and curcumin-modified silver nanoparticles (cAg) through a one-step synthesis method based on hydrogen bonds, dynamic boronic ester bonds, and coordinate covalent bonds.

View Article and Find Full Text PDF

Recycling waste to produce liquid fuels for the automotive and aviation industries is a major global concern, especially in light of the ongoing energy crisis. Because waste is used in thermal conversion processes, the resulting liquid products often require additional processing to reduce their density and viscosity, and to remove oxygenated compounds or pollutants that hinder further utilization. Catalytic hydrogenolytic reactions such as hydrodeoxygenation (HDO) and hydrocracking (HC) have been extensively applied to upgrade pyrolysis oils.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) is a new and promising strategy for eliminating foodborne pathogenic bacteria in food preservation, reducing associated health risks for consumers. This study aimed to develop an innovative PDI-based system to inactivate Salmonella Enteritidis PT4 on eggshells. The system includes 405 nm light-emitting diodes (LEDs) and the application of curcumin or carvacrol as photosensitizers.

View Article and Find Full Text PDF

Precise Synthesis of Complex Si-Si Molecular Frameworks.

J Am Chem Soc

January 2025

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

In this Perspective, we highlight the emergence of target-oriented syntheses of complex molecules composed of Si-Si (oligosilanes) rather than C-C bonds. Saturated oligosilanes structurally resemble alkanes with respect to a tetrahedral geometry, a preference for a staggered conformation in linear chains, the ability to form stable small rings, and tetrahedral stereochemistry at asymmetrically functionalized Si centers. There are also critical differences, for example, differences in multiple bonding and the ability to form penta- and hexacoordinated structures, that mean that chemical reactivity and, in particular, rules for stereoselective synthesis do not cleanly translate from carbon to silicon.

View Article and Find Full Text PDF

A highly efficient Minisci reaction of pyrimidines with alkyl radical generated from visible-light-induced activation of simple C(sp)-H feedstocks such as (cyclo)alkanes, ethers, alcohols, esters, and amides is reported. A mechanistic study revealed that alkyl radical was generated via hydrogen atom transfer (HAT) of C(sp)-H with dichloromethyl radical (·CHCl), which was generated by photoreduction of chloroform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!