During this study, full-size wood composite sandwich panels, 1.2 m by 2.4 m (4 ft by 8 ft), with a biaxial corrugated core were evaluated as a building construction material. Considering the applications of this new building material, including roof, floor, and wall paneling, sandwich panels with one and two corrugated core(s) were fabricated and experimentally evaluated. Since primary loads applied on these sandwich panels during their service life are live load, snow load, wind, and gravity loads, their bending and compression behavior were investigated. To improve the thermal characteristics, the cavities within the sandwich panels created by the corrugated geometry of the core were filled with a closed-cell foam. The R-values of the sandwich panels were measured to evaluate their energy performance. Comparison of the weight indicated that fabrication of a corrugated panel needs 74% less strands and, as a result, less resin compared to a strand-based composite panel, such as oriented strand board (OSB), of the same size and same density. Bending results revealed that one-layer core sandwich panels with floor applications under a 4.79 kPa (100 psf) bending load are able to meet the smallest deflection limit of /360 when the span length () is 137.16 cm (54 in) or less. The ultimate capacity of two-layered core sandwich panels as a wall member was 94% and 158% higher than the traditional walls with studs under bending and axial compressive loads, respectively. Two-layered core sandwich panels also showed a higher ultimate capacity compared to structural insulated panels (SIP), at 470% and 235% more in bending and axial compression, respectively. Furthermore, normalized R-values, the thermal resistance, of these sandwich panels, even with the presence of thermal bridging due to the core geometry, was about 114% and 109% higher than plywood and oriented strand board, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074376 | PMC |
http://dx.doi.org/10.3390/ma14082083 | DOI Listing |
Brain Commun
January 2025
Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2.
Blood-based biomarkers have been revolutionizing the detection, diagnosis and screening of Alzheimer's disease. Specifically, phosphorylated-tau variants (p-tau, p-tau and p-tau) are promising biomarkers for identifying Alzheimer's disease pathology. Antibody-based assays such as single molecule arrays immunoassays are powerful tools to investigate pathological changes indicated by blood-based biomarkers and have been studied extensively in the Alzheimer's disease research field.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Industrial Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
Despite the extensive literature revealing various core structures that can enhance the impact resistance of composite panels, a comparative study illustrating the difference in performance of the various cores under same loading conditions is missing. The aim of this study is to determine the optimal core structure and design in terms of energy absorption under low-velocity impact using both numerical simulations and experimental testing for validation. Response surface analysis was used to design the experiments and analyse the panel's behaviour.
View Article and Find Full Text PDFHeliyon
January 2025
Escuela de Ingeniería Forestal, Instituto Tecnológico de Costa Rica, Apartado, 159-7050, Cartago, Costa Rica.
Physical properties were studied in commercial plantation of balsa established in Costa Rica. Among other variables studied, physical properties varied mainly for tree age, spacing, stand density, diameter, and height of trees, which we named dasometric conditions. The aim of this study was (i) to determine the variation of specific gravity (SG), air-dry density (AD), green density (GD), and green moisture content (GMC), (ii) to know the site effect and dasometric conditions on these properties, and (iii) to establish the relationship between the four physical properties.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland.
In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Sustainable Bioproducts, Mississippi State University, P.O. Box 9820, Starkville, MS 39762, USA.
This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!