Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biomass-waste activated carbon/molybdenum oxide/molybdenum carbide ternary composites are prepared using a facile in-situ pyrolysis process in argon ambient with varying mass ratios of ammonium molybdate tetrahydrate to porous peanut shell activated carbon (PAC). The formation of MoO and MoC nanostructures embedded in the porous carbon framework is confirmed by extensive structural characterization and elemental mapping analysis. The best composite when used as electrodes in a symmetric supercapacitor (PAC/MoO/MoC-1//PAC/MoO/MoC-1) exhibited a good cell capacitance of 115 F g with an associated high specific energy of 51.8 W h kg, as well as a specific power of 0.9 kW kg at a cell voltage of 1.8 V at 1 A g. Increasing the specific current to 20 A g still showcased a device capable of delivering up to 30 W h kg specific energy and 18 kW kg of specific power. Additionally, with a great cycling stability, a 99.8% coulombic efficiency and capacitance retention of ~83% were recorded for over 25,000 galvanostatic charge-discharge cycles at 10 A g. The voltage holding test after a 160 h floating time resulted in increase of the specific capacitance from 74.7 to 90 F g at 10 A g for this storage device. The remarkable electrochemical performance is based on the synergistic effect of metal oxide/metal carbide (MoO/MoC) with the interconnected porous carbon. The PAC/MoO/MoC ternary composites highlight promising Mo-based electrode materials suitable for high-performance energy storage. Explicitly, this work also demonstrates a simple and sustainable approach to enhance the electrochemical performance of porous carbon materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074364 | PMC |
http://dx.doi.org/10.3390/nano11041056 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!