An Experimental Study on the Dynamic Mechanical Properties of Epoxy Polymer Concrete under Ultraviolet Aging.

Materials (Basel)

School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China.

Published: April 2021

Epoxy polymer concrete (EPC) is widely applied in engineering for its excellent mechanical properties. The impact loads and severe climatic conditions such as ultraviolet radiation, temperature change and rain erosion are in general for its engineering practice, potentially degrading the performance of EPC. In this paper, a procedure of accelerated aging for EPC, imitating the aging effect of ultraviolet radiation and hygrothermal conditions based on the meteorological statistics of Guangzhou city, was designed. After various periods of accelerated aging, the dynamic behaviors of EPC were studied by using a Split Hopkinson Pressure Bar (SHPB). The verification of the experimental data was performed. The two-stage dynamic compression stress-strain curves were obtained: (a) linear growth stage following by strain hardening stage at impact velocity 12.2 m/s and 18.8 m/s, (b) linear growth stage and then a horizontal stage when impact velocity is 25.0 m/s, (c) linear growth stage following by strain softening stage at impact velocity 29.2 m/s. The experimental results show that the specimens after longer accelerated aging tend to be more easily broken, especially at impact velocity 12.2 m/s and 18.8 m/s, while the strain rate is the main factor affecting the compression strength and stiffness. Ultimately the influence of strain rate and equivalent aging time on dynamic increase factor was revealed by a fitting surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074335PMC
http://dx.doi.org/10.3390/ma14082074DOI Listing

Publication Analysis

Top Keywords

impact velocity
16
accelerated aging
12
linear growth
12
growth stage
12
stage impact
12
mechanical properties
8
epoxy polymer
8
polymer concrete
8
ultraviolet radiation
8
stage strain
8

Similar Publications

Impact of muscle fatigue on anticipatory postural adjustments during gait initiation.

Front Physiol

January 2025

Human Physiology Section of the Department of Pathophysiology and Transplantation, Università Degli Studi, Milano, Italy.

Introduction: Prolonged or strenuous exercise leads to a temporary decrease in muscle function and performance, which interferes with activity of both prime movers and postural muscles. This effect of fatigue has been reported both for single segment movements and for locomotion. However, little is known regarding the effects of fatigue on anticipatory postural adjustments (APAs) during gait initiation, a task in which the control of focal movement should be strictly coupled to a feedforward control of posture.

View Article and Find Full Text PDF

To assess whether spinal manipulative therapy (SMT) application procedures (ie, target, thrust, and region) impacted changes in pain and disability for adults with spine pain. Systematic review with network meta-analysis. We searched PubMed and Epistemonikos for systematic reviews indexed up to February 2022 and conducted a systematic search of 5 databases (MEDLINE, EMBASE, CENTRAL [Cochrane Central Register of Controlled Trials], PEDro [Physiotherapy Evidence Database], and Index to Chiropractic Literature) from January 1, 2018, to September 12, 2023.

View Article and Find Full Text PDF

Molecular dynamics work on thermal conductivity of SiGe nanotubes.

J Mol Model

January 2025

School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.

Context: SiGe nanotubes (SiGeNTs) hold significant promise for applications in nanosolar cells, optoelectronic systems, and interconnects, where thermal conductivity is critical to performance. This study investigates the effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag SiGeNTs through molecular dynamics simulations. Results indicate that thermal conductivity increases with sample length due to ballistic heat transport and decreases with temperature as phonon scattering intensifies.

View Article and Find Full Text PDF

Microplastics Settling in Turbid Water: Impacts of Sediments-Induced Flow Patterns on Particle Deposition Rates.

Environ Sci Technol

January 2025

Department of Environmental Systems Science, ETH Zürich, Zürich 8092, Switzerland.

When microplastics (MPs) enter water bodies, they undergo various transport processes, including sedimentation, which can be influenced by factors such as particle size, density, and interactions with other particles. Surface waters contain suspended natural particles (e.g.

View Article and Find Full Text PDF

Droplet coalescence in microchannels is a complex phenomenon influenced by various parameters such as droplet size, velocity, liquid surface tension, and droplet-droplet spacing. In this study, we thoroughly investigate the impact of these control parameters on droplet coalescence dynamics within a sudden expansion microchannel using two distinct numerical methods. Initially, we employ the boundary element method to solve the Brinkman integral equation, providing detailed insights into the underlying physics of droplet coalescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!