A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improvement in the Carbonation Resistance of Construction Mortar with Cane Bagasse Fiber Added. | LitMetric

Improvement in the Carbonation Resistance of Construction Mortar with Cane Bagasse Fiber Added.

Materials (Basel)

Centro de Investigación en Corrosión, Universidad Autónoma de Campeche, Av. Héroe de Nacozari No. 480, San Francisco de Campeche, Campeche 24079, Mexico.

Published: April 2021

In this work, sugarcane bagasse fiber, a waste product of agroindustry, was added to mortar mixes at different proportions looking to seal porosities so as to improve the resistance of concrete to carbonation and to improve its mechanical properties. To evaluate the behavior of bagasse fibers in the alkaline media typical of mortars, bagasse fibers were subjected to solutions with alkaline pH values, and their chemical structure and morphological behavior was evaluated using FTIR (Fourier transform infrared spectroscopy) and SEM (Scanning Electron Microscopy). Using mortar cylinders in an accelerated carbonation chamber to obtain results in short lapses, the compressive strength and the carbonation were evaluated. The FTIR analysis results indicate that pH values of 11 and 12 causes a delignification, while at pH 9 and 10, a swelling of the molecule occurs because of the addition of hydroxyl ions, behavior that is confirmed with SEM images. A clear effect of the fiber addition on the performance of concrete was observed as the carbonation front of 35 mm for the sample without fibers was reduced to 2 mm for the sample with 2% fiber addition, resulting in an increase of 5 MPa in compressive strength. These results indicate that in the range of mortar pH, chemical changes occured over the sugarcane surface that could cause the growth of fibers and could partially seal the porosity in the mortars, thus enhancing its performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072886PMC
http://dx.doi.org/10.3390/ma14082066DOI Listing

Publication Analysis

Top Keywords

bagasse fiber
8
bagasse fibers
8
evaluated ftir
8
compressive strength
8
fiber addition
8
improvement carbonation
4
carbonation resistance
4
resistance construction
4
mortar
4
construction mortar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!