This study explored whether KMUP-1 improved chronic constriction injury (CCI)-induced BK current inhibition in dorsal root ganglion (DRG) neurons. Rats were randomly assigned to four groups: sham, sham + KMUP-1, CCI, and CCI + KMUP-1 (5 mg/kg/day, i.p.). DRG neuronal cells (L4-L6) were isolated on day 7 after CCI surgery. Perforated patch-clamp and inside-out recordings were used to monitor BK currents and channel activities, respectively, in the DRG neurons. Additionally, DRG neurons were immunostained with anti-NeuN, anti-NF200 and anti-BK. Real-time PCR was used to measure BK mRNA levels. In perforated patch-clamp recordings, CCI-mediated nerve injury inhibited BK currents in DRG neurons compared with the sham group, whereas KMUP-1 prevented this effect. CCI also decreased BK channel activity, which was recovered by KMUP-1 administration. Immunofluorescent staining further demonstrated that CCI reduced BK-channel proteins, and KMUP-1 reversed this. KMUP-1 also changed CCI-reduced BK mRNA levels. KMUP-1 prevented CCI-induced neuropathic pain and BK current inhibition in a peripheral nerve injury model, suggesting that KMUP-1 could be a potential agent for controlling neuropathic pain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073306 | PMC |
http://dx.doi.org/10.3390/cells10040949 | DOI Listing |
eNeuro
January 2025
Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia 30322
Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkB mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233.
The ability of neurons to sense and respond to damage is crucial for maintaining homeostasis and facilitating nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has uncovered a significant transcriptional response to axon injury, which influences survival and regenerative outcomes. In contrast, the injury responses of most supraspinal cell types, which display limited regeneration after spinal damage, remain mostly unknown.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China.
Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging.
View Article and Find Full Text PDFNeurorehabil Neural Repair
January 2025
Medical School of Nantong University, Nantong, Jiangsu, P.R. China.
Background: The peripheral nervous system (PNS) exhibits remarkable regenerative capability after injury. PNS regeneration relies on neurons themselves as well as a variety of other cell types, including Schwann cells, immune cells, and non-neuronal cells.
Objectives: This paper focuses on summarizing the critical roles of immune cells (SCs) in the injury and repair processes of the PNS.
Proc Natl Acad Sci U S A
January 2025
Department of Neuroscience, Farber Institute for Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107.
Use-dependent spike broadening (UDSB) results from inactivation of the voltage-gated K (Kv) channels that regulate the repolarization of the action potential. However, the specific signaling and molecular processes that modulate UDSB have remained elusive. Here, we applied an adeno-associated viral vector approach and dynamic clamping to conclusively demonstrate how multisite phosphorylation of the N-terminal inactivation domain (NTID) of the Kv3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!