Milling Performance of CFRP Composite and Atomised Vegetable Oil as a Function of Fiber Orientation.

Materials (Basel)

Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), Montreal, QC H3C 1K3, Canada.

Published: April 2021

Carbon fiber reinforced polymers (CFRPs) have found diverse applications in the automotive, space engineering, sporting goods, medical and military sectors. CFRP parts require limited machining such as detouring, milling and drilling to produce the shapes used, or for assembly purposes. Problems encountered while machining CFRP include poor tool performance, dust emission, poor part edge quality and delamination. The use of oil-based metalworking fluid could help improve the machining performance for this composite, but the resulting humidity would deteriorate the structural integrity of the parts. In this work the performance of an oil-in-water emulsion, obtained using ultrasonic atomization but no surfactant, is examined during the milling of CFRP in terms of fiber orientation and milling feed rate. The performance of wet milling is compared with that of a dry milling process. The tool displacement-fiber orientation angles (TFOA) tested are 0°, 30°, 45°, 60°, and 90°. The output responses analyzed were cutting force, delamination, and tool wear. Using atomized vegetable oil helps in significantly reducing the cutting force, tool wear, and fiber delamination as compared to the dry milling condition. The machining performance was also strongly influenced by fiber orientation. The interactions between the fiber orientation, the machining parameters and the tested vegetable oil-based fluid could help in selecting appropriate cutting parameters and thus improve the machined part quality and productivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073150PMC
http://dx.doi.org/10.3390/ma14082062DOI Listing

Publication Analysis

Top Keywords

fiber orientation
16
vegetable oil
8
fluid help
8
machining performance
8
compared dry
8
dry milling
8
cutting force
8
tool wear
8
milling
7
fiber
6

Similar Publications

Unlabelled: Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not thoroughly understood. A fruitful approach to validating accuracy is to consider microscopy data that have been co-registered with MRI of post mortem samples. In this setting, structure tensor analysis is a standard approach to computing local orientations for validation.

View Article and Find Full Text PDF

3D printing of biological tooth with multiple ordered hierarchical structures.

Mater Today Bio

February 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.

Natural teeth fulfill functional demands by their heterogeneity. The composition and hydroxyapatite (HAp) nanostructured orientation of enamel differ from those of dentin. However, mimicking analogous materials still exhibit a significant challenge.

View Article and Find Full Text PDF

Synthesis of UiO-66-NH@PSF Hollow Fiber Membrane with Enhanced Simultaneous Adsorption of Pb and Phosphate for Hydrogen Peroxide Purification.

ACS Appl Mater Interfaces

January 2025

Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China.

Electronic grade hydrogen peroxide plays a crucial role in the fabrication of large-scale integrated circuits. However, hydrogen peroxide prepared by the anthraquinone method contains impurities such as lead ions (Pb) and phosphate, which can seriously affect the yield of the circuit. Traditional adsorbent materials have difficulty in solving the problem of simultaneous adsorption of trace anions and cations in hydrogen peroxide due to the single adsorption site and poor adsorption kinetics.

View Article and Find Full Text PDF

Obstructive sleep apnea and structural and functional brain alterations: a brain-wide investigation from clinical association to genetic causality.

BMC Med

January 2025

Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.

Background: Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear.

Methods: We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function.

View Article and Find Full Text PDF

High-Performance Mechano-Sensitive Piezoelectric Nanogenerator from Post-Treated Nylon-11,11 Textiles for Energy Harvesting and Human Motion Monitoring.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, China.

Piezoelectric polymer textiles offer distinct advantages in the fabrication of wearable nanogenerators (NGs). One effective strategy to enhance the output capacity of NGs is to modulate the piezoelectric performance of the textiles. This paper focuses on further improving the piezoelectric properties of nylon-11,11 textiles through post-drawing and annealing treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!