Video anomaly recognition in smart cities is an important computer vision task that plays a vital role in smart surveillance and public safety but is challenging due to its diverse, complex, and infrequent occurrence in real-time surveillance environments. Various deep learning models use significant amounts of training data without generalization abilities and with huge time complexity. To overcome these problems, in the current work, we present an efficient light-weight convolutional neural network (CNN)-based anomaly recognition framework that is functional in a surveillance environment with reduced time complexity. We extract spatial CNN features from a series of video frames and feed them to the proposed residual attention-based long short-term memory (LSTM) network, which can precisely recognize anomalous activity in surveillance videos. The representative CNN features with the residual blocks concept in LSTM for sequence learning prove to be effective for anomaly detection and recognition, validating our model's effective usage in smart cities video surveillance. Extensive experiments on the real-world benchmark UCF-Crime dataset validate the effectiveness of the proposed model within complex surveillance environments and demonstrate that our proposed model outperforms state-of-the-art models with a 1.77%, 0.76%, and 8.62% increase in accuracy on the UCF-Crime, UMN and Avenue datasets, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072779PMC
http://dx.doi.org/10.3390/s21082811DOI Listing

Publication Analysis

Top Keywords

anomaly recognition
12
recognition framework
8
surveillance videos
8
smart cities
8
surveillance environments
8
time complexity
8
cnn features
8
proposed model
8
surveillance
7
efficient anomaly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!