An increase of integrated photoluminescence (PL) intensity has been observed in a GaN-based multiple quantum wells (MQWs) sample. The integrated intensity of TDPL spectra forms an anomalous variation: it decreases from 30 to 100 K, then increases abnormally from 100 to 140 K and decreases again when temperature is beyond 140 K. The increased intensity is attributed to the electrons and holes whose distribution are spatial non-equilibrium distributed participated in the radiative recombination process and the quantum barrier layers are demonstrated to be the source of non-equilibrium distributed carriers. The temperature dependence of this kind of spatial non-equilibrium carriers' dynamics is very different from that of equilibrium carriers, resulting in the increased emission efficiency which only occurs from 100 to 140 K. Moreover, the luminescence efficiency of MQWs with non-equilibrium carriers is much higher than that without non-equilibrium carriers, indicating the high luminescence efficiency of GaN-based LEDs may be caused by the non-equilibrium distributed carriers. Furthermore, a comparison analysis of MQWs sample with and without hydrogen treatment further demonstrates that the better quantum well is one of the key factors of this anomalous phenomenon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074106 | PMC |
http://dx.doi.org/10.3390/nano11041023 | DOI Listing |
Ecol Lett
January 2025
UMR CNRS 7058 « Ecologie et Dynamique Des Systèmes Anthropisés » (EDYSAN), Université de Picardie Jules Verne, Amiens Cedex, France.
Previous studies have demonstrated legacy effects of current species distributions to past environmental conditions, but the temporal extent of such time lag dynamics remains unknown. Here, we have developed a non-equilibrium Species Distribution Modelling (SDM) approach quantifying the temporal extent that must be taken into account to capture 95% of the effect that a given time series of past environmental conditions has on the current distribution of a species. We applied this approach on the distribution of 92 European forest birds in response to past trajectories of change in forest cover and climate.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, University of California, Riverside, CA, USA.
The floating phase, a critical incommensurate phase, has been theoretically predicted as a potential intermediate phase between crystalline ordered and disordered phases. In this study, we investigate the different quantum phases that arise in ladder arrays comprising up to 92 neutral-atom qubits and experimentally observe the emergence of the quantum floating phase. We analyze the site-resolved Rydberg state densities and the distribution of state occurrences.
View Article and Find Full Text PDFChaos
January 2025
Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia.
We consider a discrete-time Markovian random walk with resets on a connected undirected network. The resets, in which the walker is relocated to randomly chosen nodes, are governed by an independent discrete-time renewal process. Some nodes of the network are target nodes, and we focus on the statistics of first hitting of these nodes.
View Article and Find Full Text PDFJ Chem Phys
January 2025
CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
While most thermostats in molecular dynamics are designed for equilibrium systems, their extension to non-equilibrium simulations has little theoretical justification. In the literature, an artifact referred to as "lane formation" was discovered; however, its cause remained unclear and was simply attributed to a constraint on velocity fluctuations or non-ergodicity in thermostats. In addition, global deterministic thermostatted dynamics was found to exhibit unceasing phase-space compression in steady states, incompatible with their expected stationary distributions and Gibbs entropy, which was mistakenly perceived as inescapable.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!