Despite the extensive utilization of polysaccharide hydrogels in regenerative medicine, current fabrication methods fail to produce mechanically stable scaffolds using only hydrogels. The recently developed hybrid extrusion-based bioprinting process promises to resolve these current issues by facilitating the simultaneous printing of stiff thermoplastic polymers and softer hydrogels at different temperatures. Using layer-by-layer deposition, mechanically advantageous scaffolds can be produced by integrating the softer hydrogel matrix into a stiffer synthetic framework. This work demonstrates the fabrication of hybrid hydrogel-thermoplastic polymer scaffolds with tunable structural and chemical properties for applications in tissue engineering and regenerative medicine. Through an alternating deposition of polycaprolactone and alginate/carboxymethylcellulose gel strands, scaffolds with the desired architecture (e.g., filament thickness, pore size, macro-/microporosity), and rheological characteristics (e.g., swelling capacity, degradation rate, and wettability) were prepared. The hybrid fabrication approach allows the fine-tuning of wettability (approx. 50-75°), swelling (approx. 0-20× increased mass), degradability (approx. 2-30+ days), and mechanical strength (approx. 0.2-11 MPa) in the range between pure hydrogels and pure thermoplastic polymers, while providing a gradient of surface properties and good biocompatibility. The controlled degradability and permeability of the hydrogel component may also enable controlled drug delivery. Our work shows that the novel hybrid hydrogel-thermoplastic scaffolds with adjustable characteristics have immense potential for tissue engineering and can serve as templates for developing novel wound dressings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073841PMC
http://dx.doi.org/10.3390/pharmaceutics13040564DOI Listing

Publication Analysis

Top Keywords

wound dressings
8
regenerative medicine
8
thermoplastic polymers
8
hybrid hydrogel-thermoplastic
8
tissue engineering
8
hybrid
5
scaffolds
5
hybrid printing
4
printing advanced
4
advanced hydrogel-based
4

Similar Publications

Bioactive Silk Cryogel Dressing with Multiple Physical Cues to Control Cell Migration and Wound Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China.

Introducing multiple physical cues to control cell behaviors effectively is considered as a promising strategy in developing bioactive wound dressings. Silk nanofiber-based cryogels are developed to favor angiogenesis and tissue regeneration through tuning hydrated state, microporous structure, and mechanical property, but remained a challenge to endow with more physical cues. Here, β-sheet rich silk nanofibers are used to develop cryogels with nanopore structure.

View Article and Find Full Text PDF

Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated.

View Article and Find Full Text PDF

Objective: Study on the impact of medical wound dressing compositions on reference strains of microorganisms in vitro conditions.

Materials And Methods: The study compared the antimicrobial activity of three types of dressing materials (DM): iodoform gauze bandage, DM with furagin and sodium alginate, DM from hydrogel with dimexide and silver nitrates. Gauze bandage with chlorhexidine was used as a control.

View Article and Find Full Text PDF

Considerable research has focused on advanced wound dressing technology over the past decade. The increasing emphasis on health and medical treatment is crucial to the modern healthcare system. Consequently, high-quality wound dressings with advanced standards are essential for superior medical care.

View Article and Find Full Text PDF

Background And Aims: This systematic review and meta-analysis evaluate the efficacy of moist versus non-moist dressings for split-thickness skin graft (STSG) donor sites, focusing on time to healing, pain management, and adverse events to guide clinical practice.

Methods: A comprehensive literature search was conducted across databases including Ovid/MEDLINE, Embase, Cochrane CENTRAL, Cochrane Database of Systematic Reviews, and Scopus up to November 28, 2023. The study adhered to PRISMA guidelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!