AI Article Synopsis

  • Mild traumatic brain injury can significantly alter brain activity, leading to distinct changes in neurotransmission and oscillations in patients with post-concussive syndrome and chronic pain.
  • A study involving 57 affected patients and 54 controls utilized advanced electroencephalography and machine learning techniques to analyze brain wave patterns and identify differences.
  • Results showed that patients had increased delta and theta power and decreased alpha power, with findings strongly correlating with symptom duration and offering a high predictive classification accuracy for distinguishing between patient and control groups.

Article Abstract

(1) Background: Mild traumatic brain injury produces significant changes in neurotransmission including brain oscillations. We investigated potential quantitative electroencephalography biomarkers in 57 patients with post-concussive syndrome and chronic pain following motor vehicle collision, and 54 healthy nearly age- and sex-matched controls. (2) Methods: Electroencephalography processing was completed in MATLAB, statistical modeling in SPSS, and machine learning modeling in Rapid Miner. Group differences were calculated using current-source density estimation, yielding whole-brain topographical distributions of absolute power, relative power and phase-locking functional connectivity. Groups were compared using independent sample Mann-Whitney U tests. Effect sizes and Pearson correlations were also computed. Machine learning analysis leveraged a post hoc supervised learning support vector non-probabilistic binary linear kernel classification to generate predictive models from the derived EEG signatures. (3) Results: Patients displayed significantly elevated and slowed power compared to controls: delta ( = 0.000000, = 0.6) and theta power ( < 0.0001, = 0.4), and relative delta power ( < 0.00001) and decreased relative alpha power ( < 0.001). Absolute delta and theta power together yielded the strongest machine learning classification accuracy (87.6%). Changes in absolute power were moderately correlated with duration and persistence of symptoms in the slow wave frequency spectrum (<15 Hz). (4) Conclusions: Distributed increases in slow wave oscillatory power are concurrent with post-concussive syndrome and chronic pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145977PMC
http://dx.doi.org/10.3390/brainsci11050537DOI Listing

Publication Analysis

Top Keywords

machine learning
12
elevated slowed
8
patients post-concussive
8
post-concussive syndrome
8
syndrome chronic
8
chronic pain
8
pain motor
8
motor vehicle
8
vehicle collision
8
power
8

Similar Publications

Atemoya fruit deteriorates rapidly during post-harvest storage. A complete understanding of the metabolic mechanisms underlying this process is crucial for developing effective preservation strategies. Metabolomic approaches combined with machine learning offer new opportunities to identify quality-related biomarkers.

View Article and Find Full Text PDF

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Machine learning assisted classification RASAR modeling for the nephrotoxicity potential of a curated set of orally active drugs.

Sci Rep

January 2025

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.

We have adopted the classification Read-Across Structure-Activity Relationship (c-RASAR) approach in the present study for machine-learning (ML)-based model development from a recently reported curated dataset of nephrotoxicity potential of orally active drugs. We initially developed ML models using nine different algorithms separately on topological descriptors (referred to as simply "descriptors" in the subsequent sections of the manuscript) and MACCS fingerprints (referred to as "fingerprints" in the subsequent sections of the manuscript), thus generating 18 different ML QSAR models. Using the chemical spaces defined by the modeling descriptors and fingerprints, the similarity and error-based RASAR descriptors were computed, and the most discriminating RASAR descriptors were used to develop another set of 18 different ML c-RASAR models.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!