A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modular Assembly of Ordered Hydrophilic Proteins Improve Salinity Tolerance in . | LitMetric

Most late embryogenesis abundant group 3 (G3LEA) proteins are highly hydrophilic and disordered, which can be transformed into ordered α-helices to play an important role in responding to diverse stresses in numerous organisms. Unlike most G3LEA proteins, DosH derived from is a naturally ordered G3LEA protein, and previous studies have found that the N-terminal domain (position 1-103) of DosH protein is the key region for its folding into an ordered secondary structure. Synthetic biology provides the possibility for artificial assembling ordered G3LEA proteins or their analogues. In this report, we used the N-terminal domain of DosH protein as module A (named DS) and the hydrophilic domains (DrHD, BnHD, CeHD, and YlHD) of G3LEA protein from different sources as module B, and artificially assembled four non-natural hydrophilic proteins, named DS + DrHD, DS + BnHD, DS + CeHD, and DS + YlHD, respectively. Circular dichroism showed that the four hydrophile proteins were highly ordered proteins, in which the α-helix contents were DS + DrHD (56.1%), DS + BnHD (53.7%), DS + CeHD (49.1%), and DS + YLHD (64.6%), respectively. Phenotypic analysis showed that the survival rate of recombinant containing ordered hydrophilic protein was more than 10% after 4 h treatment with 1.5 M NaCl, which was much higher than that of the control group. Meanwhile, in vivo enzyme activity results showed that they had higher activities of superoxide dismutase, catalase, lactate dehydrogenase and less malondialdehyde production. Based on these results, the N-terminal domain of DosH protein can be applied in synthetic biology due to the fact that it can change the order of hydrophilic domains, thus increasing stress resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123400PMC
http://dx.doi.org/10.3390/ijms22094482DOI Listing

Publication Analysis

Top Keywords

g3lea proteins
12
n-terminal domain
12
dosh protein
12
ordered hydrophilic
8
hydrophilic proteins
8
proteins highly
8
ordered g3lea
8
g3lea protein
8
synthetic biology
8
domain dosh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!