High feed Milling is a new milling method, which allows to apply high feed rates and increase machining efficiency. The method utilizes face cutters with a very small entering angle, of about 10°-20°. Thus, the cut layer cross-section is different than in traditional milling. In order to examine the high feed milling (HFM), experimental tests were conducted, preceded by an analysis of cutting zones when milling with an HF face cutter. The face milling tests of 42CrMo4 steel with the use of an HF cutter characterized by an entering angle, dependent on axial depth of cut and insert radius values, as well as with a conventional face cutter with the entering angle of 45° were performed. The study focused on analyzing the vibration amplitude, cutting force components in the workpiece coordinate system, and surface roughness. The experimental tests proved, that when milling with constant cut layer thickness, the high feed cutter allowed to obtain twice the cutting volume in comparison with the conventional face cutter. However, higher machining efficiency resulted in an increase in cutting force components. Furthermore, the results indicate significantly higher surface roughness and higher vibration amplitudes when milling with the HF cutter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123177 | PMC |
http://dx.doi.org/10.3390/ma14092196 | DOI Listing |
Primary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation.
View Article and Find Full Text PDFFoot Ankle Int
January 2025
Division of Foot and Ankle, Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.
Background: Hallux valgus (HV) is a complex, multiplanar deformity. In this study, we examined the interrelationships between various components of this deformity using weightbearing computed tomography (WBCT). We hypothesized that the severity of traditional axial plane deformities would correlate with malpositioning of the metatarsosesamoid complex, first-ray coronal rotational deformity, and malalignment of the hindfoot and midfoot.
View Article and Find Full Text PDFAim: Latissimus dorsi is a multi-purpose muscle that can be used to repair defects in many areas of the body. The current study aims to investigate latissimus dorsi morphometry, innervation, vascularization, and variational situations in fetuses.
Material And Methods: Forty-nine fetuses, aged between 15 and 40 weeks of gestation, were examined for the morphological development of the latissimus dorsi.
Anal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.
A linear spot-type multipass cell-enhanced fiber-optic photoacoustic gas microprobe is proposed. To further reduce the volume of the gas chamber and enhance the photoacoustic signal, we designed the cross section of the photoacoustic tube as a slit with a height of 10 mm and a width of 1.5 mm.
View Article and Find Full Text PDFEquine Vet J
January 2025
Department of Equine Clinical Science, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK.
Background: Trimming is critical for a functioning equine hoof. Pressure distribution provides information on loading; however, information on the effects of trimming on pressure distribution is lacking.
Objectives: To describe the pressure changes of equine fore feet following trimming.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!