Three-dimensional bioprinting has attracted much attention for biomedical applications, including wound dressing and tissue regeneration. The development of functional and easy-to-handle inks is expected to expand the applications of this technology. In this study, aqueous solutions of chitosan derivatives containing sodium persulfate (SPS) and Tris(2,2'-bipyridyl) ruthenium(II) chloride (Ru(bpy)) were applied as inks for both extrusion-based and vat polymerization-based bioprinting. In both the printing systems, the curation of ink was caused by visible light irradiation. The gelation time of the solution and the mechanical properties of the resultant hydrogels could be altered by changing the concentrations of SPS and Ru(bpy). The 3D hydrogel constructs with a good shape fidelity were obtained from the chitosan inks with a composition that formed gel within 10 s. In addition, we confirmed that the chitosan hydrogels have biodegradability and antimicrobial activity. These results demonstrate the significant potential of using the visible light-curable inks containing a chitosan derivative for extrusion and vat polymerization-based bioprinting toward biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122994 | PMC |
http://dx.doi.org/10.3390/polym13091382 | DOI Listing |
Biotechnol J
October 2024
Leibniz University Hannover, Hannover, Germany.
In light-based 3D-bioprinting, gelatin methacrylate (GelMA) is one of the most widely used materials, as it supports cell attachment, and shows good biocompatibility and degradability in vivo. However, as an animal-derived material, it also causes safety concerns when used in medical applications. Gelatin is a partial hydrolysate of collagen, containing high amounts of hydroxyproline.
View Article and Find Full Text PDFPolymers (Basel)
January 2023
Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy.
Additive manufacturing technologies are developed and utilized to manufacture complex, lightweight, functional, and non-functional components with optimized material consumption. Among them, vat polymerization-based digital light processing (DLP) exploits the polymerization of photocurable resins in the layer-by-layer production of three-dimensional objects. With the rapid growth of the technology in the last few years, DLP requires a rational design framework for printing process optimization based on the specific material and printer characteristics.
View Article and Find Full Text PDFInt J Bioprint
February 2022
National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
Three-dimensional (3D) bioprinting is an emerging technology that is widely used in regenerative medicine. With the continuous development of the technology, it has attracted great attention and demonstrated promising prospects in ophthalmologic applications. In this paper, we review the three main types of 3D bioprinting technologies: Vat polymerization-based bioprinting, extrusion-based bioprinting, and jetting-based bioprinting.
View Article and Find Full Text PDFACS Biomater Sci Eng
March 2022
School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.
Bioprinting is a promising fabrication technique aimed at developing biologically functional, tissue-like constructs for various biomedical applications. Among the different bioprinting approaches, vat polymerization-based techniques offer the highest feature resolution compared to more commonly used extrusion-based methods and therefore have greater potential to be utilized for printing complex hierarchical tissue architectures. Although significant efforts have been directed toward harnessing digital light processing techniques for high-resolution bioprinting, the use of stereolithography (SLA) setups for producing distinct hydrogel filaments smaller than 20 μm has received less attention.
View Article and Find Full Text PDFPolymers (Basel)
April 2021
Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
Three-dimensional bioprinting has attracted much attention for biomedical applications, including wound dressing and tissue regeneration. The development of functional and easy-to-handle inks is expected to expand the applications of this technology. In this study, aqueous solutions of chitosan derivatives containing sodium persulfate (SPS) and Tris(2,2'-bipyridyl) ruthenium(II) chloride (Ru(bpy)) were applied as inks for both extrusion-based and vat polymerization-based bioprinting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!