A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of Material Properties on the Damage-Reporting and Self-Healing Performance of a Mechanically Active Dynamic Network Polymer in Coating Applications. | LitMetric

AI Article Synopsis

  • The study examined how the material properties of dynamic polymer network coatings affect their ability to self-heal and report damage.
  • Soft polymer networks showed excellent self-healing (almost 100%) but poor damage reporting, while harder networks performed better in damage reporting but not in self-healing.
  • The findings highlight that optimizing physical properties of these coatings is crucial for enhancing their performance, which differs from traditional materials like elastomers and films.

Article Abstract

We conducted a detailed investigation of the influence of the material properties of dynamic polymer network coatings on their self-healing and damage-reporting performance. A series of reversible polyacrylate urethane networks containing the damage-reporting diarylbibenzofuranone unit were synthesized, and their material properties (e.g., indentation modulus, hardness modulus, and glass-transition temperature) were measured conducting nanoindentation and differential scanning calorimetry experiments. The damage-reporting and self-healing performances of the dynamic polymer network coatings exhibited opposite tendencies with respect to the material properties of the polymer network coatings. Soft polymer network coatings with low glass-transition temperature (~10 °C) and indentation hardness (20 MPa) exhibited better self-healing performance (almost 100%) but two times worse damage-reporting properties than hard polymer network coatings with high glass-transition temperature (35~50 °C) and indentation hardness (150~200 MPa). These features of the dynamic polymer network coatings are unique; they are not observed in elastomers, films, and hydrogels, whereby the polymer networks are bound to the substrate surface. Evidence indicates that controlling the polymer's physical properties is a key factor in designing high-performance self-healing and damage-reporting polymer coatings based on mechanophores.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122913PMC
http://dx.doi.org/10.3390/molecules26092468DOI Listing

Publication Analysis

Top Keywords

polymer network
24
network coatings
24
material properties
16
dynamic polymer
12
glass-transition temperature
12
polymer
9
influence material
8
damage-reporting self-healing
8
self-healing performance
8
self-healing damage-reporting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!