Small guanosine triphosphatases (GTPases) of the Rab and Arf families are key regulators of vesicle formation and membrane trafficking. Membrane transport plays an important role in the central nervous system. In this regard, neurons require a constant flow of membranes for the correct distribution of receptors, for the precise composition of proteins and organelles in dendrites and axons, for the continuous exocytosis/endocytosis of synaptic vesicles and for the elimination of dysfunctional proteins. Thus, it is not surprising that Rab and Arf GTPases have been associated with neurodegenerative diseases such as Alzheimer's and Parkinson's. Both pathologies share characteristics such as the presence of protein aggregates and/or the fragmentation of the Golgi apparatus, hallmarks that have been related to both Rab and Arf GTPases functions. Despite their relationship with neurodegenerative disorders, very few studies have focused on the role of these GTPases in the pathogenesis of neurodegeneration. In this review, we summarize their importance in the onset and progression of Alzheimer's and Parkinson's diseases, as well as their emergence as potential therapeutical targets for neurodegeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122874 | PMC |
http://dx.doi.org/10.3390/ijms22094425 | DOI Listing |
J Am Chem Soc
December 2024
Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States.
Small GTPases (smG) are a 150-member family of proteins, comprising five subfamilies: Ras, Rho, Arf, Rab, and Ran-GTPases. These proteins function as molecular switches, toggling between two distinct nucleotide-bound states. Using traditional multidimensional heteronuclear NMR, even for single smGs, numerous experiments, high protein concentrations, expensive isotope labeling, and long analysis times are necessary.
View Article and Find Full Text PDFJ Cell Biol
December 2024
Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
We identify BEACH domain-containing proteins (BDCPs) as novel membrane coat proteins involved in the sorting of transmembrane proteins (TMPs) on the trans-Golgi network and tubular sorting endosomes. The seven typical mammalian BDCPs share a predicted alpha-solenoid-beta propeller structure, suggesting they have a protocoatomer origin and function. We map the subcellular localization of seven BDCPs based on their dynamic colocalization with RAB and ARF small GTPases and identify five typical BDCPs on subdomains of dynamic tubular-vesicular compartments on the intersection of endocytic recycling and post-Golgi secretory pathways.
View Article and Find Full Text PDFJ Cell Biol
November 2024
Department of Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany.
Deleterious mutations in the lipopolysaccharide responsive beige-like anchor protein (LRBA) gene cause severe childhood immune dysregulation. The complexity of the symptoms involving multiple organs and the broad range of unpredictable clinical manifestations of LRBA deficiency complicate the choice of therapeutic interventions. Although LRBA has been linked to Rab11-dependent trafficking of the immune checkpoint protein CTLA-4, its precise cellular role remains elusive.
View Article and Find Full Text PDFMol Med Rep
November 2024
Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China.
Cardiac hypertrophy results from the heart reacting and adapting to various pathological stimuli and its persistent development is a major contributing factor to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain unclear. Small GTPases in the Ras, Rho, Rab, Arf and Ran subfamilies exhibit GTPase activity and play crucial roles in regulating various cellular responses.
View Article and Find Full Text PDFDev Cell
September 2024
Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Autophagy is a universal degradation system in eukaryotic cells. In plants, although autophagosome biogenesis has been extensively studied, the mechanism of how autophagosomes are transported to the vacuole for degradation remains largely unexplored. In this study, we demonstrated that upon autophagy induction, Arabidopsis homotypic fusion and protein sorting (HOPS) subunit VPS41 converts first from condensates to puncta, then to ring-like structures, termed VPS41-associated phagic vacuoles (VAPVs), which enclose autophagy-related gene (ATG)8s for vacuolar degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!