A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Supplementing Rumen-Protected Methionine and Lysine on Milk Performance and Oxidative Status of Dairy Ewes. | LitMetric

Effects of Supplementing Rumen-Protected Methionine and Lysine on Milk Performance and Oxidative Status of Dairy Ewes.

Antioxidants (Basel)

Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.

Published: April 2021

There is limited information on the impact of dietary supplementation with separate rumen-protected (RP) amino acids (AA), or with their combination, on ewes' oxidative status. Sixty ewes were divided into five groups; C: basal diet (control); M: basal diet + 6 g/ewe RP methionine; L: basal diet + 5 g/ewe RP lysine; LML: basal diet + 6 g methionine and 5 g lysine/ewe; and HML: basal diet + 12 g methionine + 5 g lysine/ewe. Milk's fat content increased in RP-AA fed ewes, while that of protein in M and L only. In blood plasma, the malondialdehyde (MDA) content was reduced in the M, LML, and HML compared to C-fed ewes. An increase in glutathione transferase activity in the blood plasma of the M and LML compared to the C and HML-fed ewes were found. In milk, lower values of the ferric reducing ability of plasma (FRAP) in the LML and HML-fed ewes and of 2,2'-Azino-bis 3-ethylbenzthiazoline-6-sulfonic acid (ABTS) in LML only, were found. Lysine increased milk's FRAP values and MDA content. Both L and HML diets increased milk's protein carbonyls content. Methionine improves the organism's oxidative status, without adversely affecting milk's oxidative stability. Lysine dietary inclusion affects negatively the oxidative stability of milk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147003PMC
http://dx.doi.org/10.3390/antiox10050654DOI Listing

Publication Analysis

Top Keywords

basal diet
20
oxidative status
12
diet g/ewe
8
diet methionine
8
methionine lysine/ewe
8
blood plasma
8
mda content
8
hml-fed ewes
8
increased milk's
8
oxidative stability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!