Pharmacokinetic Drug-Drug Interactions and Herb-Drug Interactions.

Pharmaceutics

BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea.

Published: April 2021

Due to the growing use of herbal supplementation-ease of taking herbal supplements with therapeutics drugs (i [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8146483PMC
http://dx.doi.org/10.3390/pharmaceutics13050610DOI Listing

Publication Analysis

Top Keywords

pharmacokinetic drug-drug
4
drug-drug interactions
4
interactions herb-drug
4
herb-drug interactions
4
interactions growing
4
growing herbal
4
herbal supplementation-ease
4
supplementation-ease herbal
4
herbal supplements
4
supplements therapeutics
4

Similar Publications

Real-world application of physiologically based pharmacokinetic models in drug discovery.

Drug Metab Dispos

January 2025

Simcyp Division, Certara UK, Ltd, Princeton, New Jersey. Electronic address:

The utility of physiologically based pharmacokinetic (PBPK) models in support of drug development has been well documented. During the discovery stage, PBPK modeling has increasingly been applied for early risk assessment, prediction of human dose, toxicokinetic dose projection, and early formulation assessment. Previous review articles have proposed model-building and application strategies for PBPK-based first-in-human predictions with comprehensive descriptions of the individual components of PBPK models.

View Article and Find Full Text PDF

Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mispredicted (ie, false positives) the interaction that is observed in vivo. Recent findings demonstrated that the presence of the allosteric modulator progesterone (PGS) in the in vitro assay could alter the in vitro kinetics of CYP3A4 TDI with inhibitors that interact with the heme moiety, such as metabolic-intermediate complex forming inhibitors. The impact of the presence of 100 μM PGS on the TDI of molecules in the class of macrolides typically associated with metabolic-intermediate complex formation was investigated.

View Article and Find Full Text PDF

Physiologically based pharmacokinetic (PBPK) modeling is a physiologically relevant approach that integrates drug-specific and system parameters to generate pharmacokinetic predictions for target populations. It has gained immense popularity for drug-drug interaction, organ impairment, and special population studies over the past 2 decades. However, an application of PBPK modeling with great potential remains rather overlooked-prediction of diarrheal disease impact on oral drug pharmacokinetics.

View Article and Find Full Text PDF

Utility of physiologically based pharmacokinetic modeling in predicting and characterizing clinical drug interactions.

Drug Metab Dispos

January 2025

Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co, Inc, Boston, Massachusetts. Electronic address:

Physiologically based pharmacokinetic (PBPK) modeling is a mechanistic dynamic modeling approach that can be used to predict or retrospectively describe changes in drug exposure due to drug-drug interactions (DDIs). With advancements in commercially available PBPK software, PBPK DDI modeling has become a mainstream approach from early drug discovery through to late-stage drug development and is often used to support regulatory packages for new drug applications. This Minireview will briefly describe the approaches to predicting DDI using PBPK and static modeling approaches, the basic model structures and features inherent to PBPK DDI models, and key examples where PBPK DDI models have been used to describe complex DDI mechanisms.

View Article and Find Full Text PDF

Remimazolam (Byfavo, Acacia Pharma), a recent Food and Drug Administration-approved ester-linked benzodiazepine, offers advantages in sedation, such as rapid onset and predictable duration, making it suitable for broad anesthesia applications. Its favorable pharmacological profile is primarily attributed to rapid hydrolysis, the primary metabolism pathway for its deactivation. Thus, understanding remimazolam hydrolysis determinants is essential for optimizing its clinical use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!