A series of bio-based hydrophobically modified isosorbide dimethacrylates, with , , and benzoate aromatic spacers (ISBGBMA), are synthesized, characterized, and evaluated as potential dental restorative resins. The new monomers, isosorbide 2,5-bis(4-glyceryloxybenzoate) dimethacrylate (ISB4GBMA), isosorbide 2,5-bis(3-glyceryloxybenzoate) dimethacrylate (ISB3GBMA), and isosorbide 2,5-bis(2-glyceryloxybenzoate) dimethacrylate (ISB2GBMA), are mixed with triethylene glycol dimethacrylate (TEGDMA) and photopolymerized. The resulting polymers are evaluated for the degree of monomeric conversion, polymerization shrinkage, water sorption, glass transition temperature, and flexural strength. Isosorbide glycerolate dimethacrylate (ISDGMA) is synthesized, and Bisphenol A glycerolate dimethacrylate (BisGMA) is prepared, and both are evaluated as a reference. Poly(ISBGBMA/TEGDMA) series shows lower water sorption (39-44 µg/mm) over Poly(ISDGMA/TEGDMA) (73 µg/mm) but higher than Poly(BisGMA/TEGDMA) (26 µg/mm). Flexural strength is higher for Poly(ISBGBMA/TEGDMA) series (37-45 MPa) over Poly(ISDGMA/TEGDMA) (10 MPa) and less than Poly(BisGMA/TEGDMA) (53 MPa) after immersion in phosphate-buffered saline (DPBS) for 24 h. Poly(ISB2GBMA/TEGDMA) has the highest glass transition temperature at 85 °C, and its monomeric mixture has the lowest viscosity at 0.62 Pa·s, among the (ISBGBMA/TEGDMA) polymers and monomer mixtures. Collectively, this data suggests that the ortho ISBGBMA monomer is a potential bio-based, BPA-free replacement for BisGMA, and could be the focus for future study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122847 | PMC |
http://dx.doi.org/10.3390/ma14092139 | DOI Listing |
Mikrochim Acta
January 2025
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350005, China; FujianKey Laboratory of Women and Children's Critical Diseases Research, Fuzhou, Fujian 350005, China. Electronic address:
Isothermal, enzyme-free amplification techniques, such as the hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), have gained significant attention for mRNA analysis. Despite their potential, these methods still face challenges, including false positives and low amplification efficiency. To overcome these limitations, we have developed a confined catalytic hairpin assembly and hybridization chain reaction (CHA-HCR) system that utilizes cholesterol-modified hairpin probes to enhance the sensitivity and specificity of mRNA detection.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India. Electronic address:
This study focused on developing biodegradable packaging films based on starch as an alternative to non-biodegradable such as petroleum-derived synthetic polymers. To improve its physicochemical properties, potato starch was chemically modified through phosphorylation. Starch phosphorylation was carried out using cyclic 1,3-propanediol phosphoryl chloride (CPPC), produced phosphorylated starch (PS), and analyzed using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), and Thermogravimetric analysis (TGA).
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Republic of Serbia. Electronic address:
The lipophilicity of thirteen tacrine/piperidine-4-carboxamide derivatives was assessed using reversed-phase thin-layer chromatography (RP-TLC) with MeOH and acetonitrile (ACN) as organic modifiers. Among the parameters evaluated, the R and C values obtained using MeOH were identified as the most reliable for characterizing the lipophilicity of the investigated compounds. The observed differences in lipophilicity among the derivatives resulted from a delicate interplay of substituent effects (hydrophobicity, polarity, steric hindrance, and electronic effects), positional influence, and characteristics of the organic modifier.
View Article and Find Full Text PDFACS Nano
January 2025
Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
Unlike homogeneous metal complexes, achieving absolute control over reaction selectivity in heterogeneous catalysts remains a formidable challenge due to the unguided molecular adsorption/desorption on metal-surface sites. Conventional organic surface modifiers or ligands and rigid inorganic and metal-organic porous shells are not fully effective. Here, we introduce the concept of "ligand-porous shell cooperativity" to desirably reaction selectivity in heterogeneous catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!