AI Article Synopsis

  • Yeast-derived mannoproteins can enhance wine quality by improving technological properties, but more research is needed on how to efficiently extract them from different yeast species.
  • Nine yeast strains were analyzed for mannoprotein content using fluorescence microscopy, with four strains selected for further extraction optimization.
  • The best extraction method combined ultrasound and enzymatic treatment, yielding significant differences in carbohydrate/protein ratios, highlighting the impact of yeast species and extraction methods on wine characteristics.

Article Abstract

The exogenous application of yeast-derived mannoproteins presents many opportunities for the improvement of wine technological and oenological properties. Their isolation from the cell wall of has been well studied. However, investigations into the efficiency of extraction methods from non- yeasts are necessary to explore the heterogeneity in structure and composition that varies between yeast species, which may influence wine properties such as clarity and mouthfeel. In this study, nine yeast strains were screened for cell wall mannoprotein content using fluorescence microscopy techniques. Four species were subsequently exposed to a combination of mechanical and enzymatic extraction methods to optimize mannoprotein yield. Yeast cells subjected to 4 min of ultrasound treatment applied at 80% of the maximum possible amplitude with a 50% duty cycle, followed by an enzymatic treatment of 4000 U lyticase per g dry cells weight, showed the highest mannoprotein-rich yield from all species. Furthermore, preliminary evaluation of the obtained extracts revealed differences in carbohydrate/protein ratios between species and with increased enzyme incubation time. The results obtained in this study form an important step towards further characterization of extraction treatment impact and yeast species effect on the isolated mannoproteins, and their subsequent influence on wine properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145949PMC
http://dx.doi.org/10.3390/foods10050924DOI Listing

Publication Analysis

Top Keywords

cell wall
8
extraction methods
8
yeast species
8
influence wine
8
wine properties
8
species
5
optimised extraction
4
extraction preliminary
4
preliminary characterisation
4
characterisation mannoproteins
4

Similar Publications

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

Advances on cell wall biology: Highlights from the XVI Plant Cell Wall Meeting.

Cell Surf

December 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain.

View Article and Find Full Text PDF

The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.

View Article and Find Full Text PDF

Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, , that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).

View Article and Find Full Text PDF

Mutations in the gene cause the most common form of human hereditary hearing loss, known as DFNB1. is expressed in two cell groups of the cochlea-epithelial cells of the organ of Corti and fibrocytes of the inner sulcus and lateral wall-but not by sensory hair cells or neurons. Attempts to treat mouse models of DFNB1 with AAV vectors mediating nonspecific expression have not substantially restored function, perhaps because inappropriate expression in hair cells and neurons could compromise their electrical activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!