Applications of polymeric materials in electrical engineering increasingly require improvements in operating voltages, performance, reliability, and size reduction. However, the resulting increase on the electric field in electrical systems can prevent achieving these goals. Polymer composites, functionalized with conductive or semiconductive particles, can allow us to reduce the electric field, thus grading the field within the system. In this paper, a comprehensive review of field-grading materials, their properties, and recent developments and applications is provided to realize high-performance high-voltage engineering applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122787 | PMC |
http://dx.doi.org/10.3390/polym13091370 | DOI Listing |
Radiat Environ Biophys
January 2025
Department of Physics, Yazd University, Yazd, Iran.
Polymer nanocomposites have been investigated as lightweight and suitable alternatives to lead-based clothing. The present study aims to fabricate flexible, lead-free, X-ray-shielding composites using a polyvinyl chloride (PVC) matrix and different nanostructures. Four different nanostructures containing impure tungsten oxide, tungsten oxide (WO), barium tungstate (BaWO), and bismuth tungstate (BiWO) were synthesized through various methods.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Conservative Dentistry, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
Objective: It is hypothesized that the way nano- and micro-hybrid polymer-based composites are structured and cured impacts the way they respond to aging.
Material And Methods: A polymer-ceramic interpenetrating network composite (Vita Enamic/VE), an industrially polymerized (Brillinat CriosST/BC), and an in situ light-cured composite with discrete inorganic fillers (Admira Fusion5/AF5) were selected. Specimens (308) were either cut from CAD/CAM blocks (VE/BC) or condensed and cured in white polyoxymethylene molds (AF5) and subjected to four different aging conditions ( = 22): (a) 24 h storage in distilled water at 37 °C; (b) 24 h storage in distilled water at 37 °C followed by thermal cycling for 10,000 cycles 5/55 °C (TC); (c) TC followed by storage in a 75% ethanol-water solution; and (d) TC followed by a 3-week demineralization/remineralization cycling.
Nanomaterials (Basel)
January 2025
Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.
This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of the Malay World and Civilisation (ATMA), Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
The adoption of pultruded glass fibre-reinforced polymer (pGFRP) composites as a substitute for traditional wooden cross-arms in high transmission towers represents a relatively novel approach. These materials were selected for their high strength-to-weight ratio and lightweight properties. Despite various studies focusing on structures improvement, there still have a significant gap in understanding the deformation characteristics of full-scale cross-arms under actual operational loads.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China.
A styrene-glycidylmethacrylate-1-allyl-3-vinylimidazole epoxy functionalized ionomer (EFI) was synthesized, and the EFI and carbon nanotubes (CNTs) were co-introduced into poly(lactide)/poly(butylene-adipate-co-terephtalate) (PLA/PBAT) blends to fabricate high performance composites with excellent mechanical properties, fatigue-resistance and dielectric properties. It is revealed that EFI can improve the interaction force between PLA and PBAT by inducing the interfacial crosslink reaction, thereby improving the melt strength of the samples. EFI can also refine the dispersion of CNT in the composites owing to the non-covalent force between EFI and CNT, promote the formation of filler network inside composites, which is demonstrated by DMA and rheological test results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!