Application of a Physiologically Based Pharmacokinetic Model to Develop a Veterinary Amorphous Enrofloxacin Solid Dispersion.

Pharmaceutics

National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China.

Published: April 2021

Zoonotic intestinal pathogens threaten human health and cause huge economic losses in farming. Enrofloxacin (ENR) shows high antibacterial activity against common intestinal bacteria. However, its poor palatability and low aqueous solubility limit the clinical application of ENR. To obtain an ENR oral preparation with good palatability and high solubility, a granule containing an amorphous ENR solid dispersion (ENR-SD) was prepared. Meanwhile, a PBPK model of ENR in pigs was built based on the physiological parameters of pigs and the chemical-specific parameters of ENR to simulate the pharmacokinetics (PK) of ENR-SD granules in the intestinal contents. According to the results of parameter sensitivity analysis (PSA) and the predicted PK parameters at different doses of the model, formulation strategies and potential dose regimens against common intestinal infections were provided. The DSC and XRD results showed that no specific interactions existed between the excipients and ENR during the compatibility tests, and ENR presented as an amorphous form in ENR-SD. Based on the similar PK performance of ENR-SD granules and the commercial ENR soluble powder suggesting continued enhancement of the solubility of ENR, a higher drug concentration in intestinal contents could not be obtained. Therefore, a 1:5 ratio of ENR and stearic acid possessing a saturated aqueous solubility of 1190 ± 7.71 µg/mL was selected. The predictive AUC/MIC ratios against , , and were 133, 266 and 8520 (>100), respectively, suggesting that satisfactory efficacy against common intestinal infections would be achieved at a dose of 10 mg/kg b.w. once daily. The PSA results indicated that the intestinal absorption rate constant (Ka) was negatively correlated with the C of ENR in the intestine, suggesting that we could obtain higher intestinal C using P-gp inducers to reduce Ka, thus obtaining a higher C. Our studies suggested that the PBPK model is an excellent tool for formulation and dose design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143505PMC
http://dx.doi.org/10.3390/pharmaceutics13050602DOI Listing

Publication Analysis

Top Keywords

enr
12
common intestinal
12
solid dispersion
8
intestinal
8
aqueous solubility
8
pbpk model
8
enr-sd granules
8
intestinal contents
8
intestinal infections
8
application physiologically
4

Similar Publications

Enhancing Mechanical and Antibacterial Performance of Tire Waste/Epoxidized Natural Rubber Blends Using Modified Zinc Oxide-Silica.

Polymers (Basel)

January 2025

Sustainable Polymer & Innovative Composite Materials Research Group, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.

This study investigates the synergistic effects of incorporating modified zinc oxide-silica (ZnO-SiO) into tire waste (TW) and epoxidized natural rubber (ENR) blends, with a focus on crosslinking dynamics, mechanical reinforcement, and antibacterial activity. The addition of ZnO-SiO significantly enhanced crosslink density, as evidenced by increased torque and accelerated cure rates. An optimal concentration of 10 phr was found to yield the highest performance.

View Article and Find Full Text PDF

Singlet oxygen presenting a higher detoxification potential on enrofloxacin than sulfate and hydroxyl radicals.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:

With the aid of radical and non-radical reactive species (RS), advanced oxidation processes can efficiently degrade emerging organic contaminants including antibiotics but may generate toxic transformation products (TPs). However, the detoxification capacity of popular RS has not been well elucidated. This study compared the detoxification of enrofloxacin (ENR) with three RS-dominated systems: O, SO+OH, OH.

View Article and Find Full Text PDF

The use of ecofriendly natural minerals in photocatalytic processes to deal with the antimicrobial activity (AA) associated with antibiotics in aqueous systems is still incipient. Therefore, in this work, the capacity of a natural iron material (NIM) in photo-treatments, generating reactive species, to remove the antibiotic enrofloxacin and decrease its associated AA from water is presented. Initially, the fundamental composition, oxidation states, bandgap, point of zero charge, and morphological characteristics of the NIM were determined, denoting the NIM's feasibility for photocatalytic processes.

View Article and Find Full Text PDF

Evolution of Chemical, Structural, and Mechanical Properties of Titanium Nitride Films with Different Thicknesses Fabricated Using Pulsed DC Magnetron Sputtering.

Materials (Basel)

December 2024

MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.

Considering the application of titanium nitride (TiN) films as a release layer in producing Wolter-I X-ray telescope mirror shells by the electroformed nickel replication (ENR) technique, this research pays attention to the influence of nanometer-scale thickness variation in the microstructure and physical properties of TiN films deposited by the pulsed direct current (DC) magnetron sputtering method. This topic has received limited attention in the existing literature. TiN films (9.

View Article and Find Full Text PDF

Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water.

J Environ Manage

January 2025

Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China. Electronic address:

The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!