Li-Fraumeni syndrome (LFS) is a rare high-penetrance and autosomal-dominant pathological condition caused by the germline mutation of the TP53 gene, predisposing to the development of tumors from pediatric age. We conducted a qualitative systematic review following the ENTREQ (Enhancing Transparency in Reporting the Synthesis of Qualitative Research) framework. A search was made in MEDLINE/Pubmed and MeSH Database using the terms "Li-Fraumeni" AND "pediatric high-grade glioma (HGG)", identifying six cases of HGGs in pediatric patients with LFS. We added a further case with peculiar features such as no familiar history of LFS, association of embryonal rhabdomyosarcoma and bithalamic HGG, whose immunohistochemical profile was accurately defined by Next Generation Sequencing. Knowledge synthesis and case analysis grounded the discussion about challenges in the management of this pathology in pediatric age.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8167566PMC
http://dx.doi.org/10.3390/neurolint13020017DOI Listing

Publication Analysis

Top Keywords

high-grade glioma
8
li-fraumeni syndrome
8
pediatric age
8
unique case
4
case bilateral
4
bilateral thalamic
4
thalamic high-grade
4
pediatric
4
glioma pediatric
4
pediatric patient
4

Similar Publications

Isocitrate dehydrogenase 1/2 mutant (IDHmt) astrocytoma is considered a T cell-deprived tumor, yet little is known regarding the phenotypes underlying T cell exclusion. Using bulk, single nucleus and spatial RNA and protein profiling, we demonstrate that a distinct spatial organization underlies T cell confinement to the perivascular space (T cell cuff) in IDHmt astrocytoma. T cell cuffs are uniquely characterized by a high abundance of gemistocytic tumor cells (GTC) in the surrounding stroma.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) are known to be good MRI contrasts, but they have a high tendency to aggregate and their biocompatibility is limited. Hyaluronic acid is highly biocompatible, can provide SPION with colloidal stability, and interacts specifically with tumor cells through the CD44 receptor; therefore, it was used as a stabilizing layer. We successfully obtained SPION coated with hyaluronic acid and further functionalized it with folic acid to construct a dual-targeted system.

View Article and Find Full Text PDF

Objective: [Cu]Cu-ATSM is a radiotherapeutics under clinical trials. It is necessary to take appropriate measures to limit its exposure and ensures its airborne concentrations do not exceed legally permitted levels. Therefore, the purpose of this study was to measure the airborne radioactivity concentration in the inpatient room after administering [Cu]Cu-ATSM to patients.

View Article and Find Full Text PDF

PDE4 inhibitor rolipram represses hedgehog signaling via ubiquitin-mediated proteolysis of GLI transcription factors to regress breast cancer.

J Biol Chem

January 2025

Cell and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal, India, 741235. Electronic address:

Aberrant activation of the hedgehog (Hh) signaling pathway positively correlates with progression, invasion and metastasis of several cancers, including breast cancer. Although numerous inhibitors of the Hh signaling pathway are available, several oncogenic mutations of key components of the pathway, including Smoothened (Smo), have limited their capability to be developed as putative anti-cancer drugs. In this study, we have modulated the Hh signaling pathway in breast cancer using a specific FDA-approved phosphodiesterase 4 (PDE4) inhibitor rolipram.

View Article and Find Full Text PDF

Molecular Mechanisms and Strategies for Inducing Neuronal Differentiation in Glioblastoma Cells.

Cell Reprogram

January 2025

Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.

Glioblastoma multiforme (GBM) is a highly invasive brain tumor, and traditional treatments combining surgery with radiochemotherapy have limited effects, with tumor recurrence being almost inevitable. Given the lack of proliferative capacity in neurons, inducing terminal differentiation of GBM cells or glioma stem cells (GSCs) into neuron-like cells has emerged as a promising strategy. This approach aims to suppress their proliferation and self-renewal capabilities through differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!