The ability of boehmite to form printable inks has sparked interest in the manufacturing of 3D alumina (AlO) and composite structures by enabling direct ink writing methods while avoiding the use of printing additives. These materials may exhibit high porosity due to the printing and sintering procedures, depending on the intended application. The 3D-printed porous composite structures of γ-AlO and α-AlO containing 2 wt.% of carbon nanotubes or reduced graphene oxide ribbons were fabricated from boehmite gels, followed by different heat treatments. The reinforcing effect of these carbon nanostructures was evidenced by compression tests carried out on the different alumina structures. A maximum relative increase of 50% in compressive strength was achieved for the γ-AlO composite structure reinforced with reduced graphene oxide ribbons, which was also accompanied by an increase in the specific surface area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8122593 | PMC |
http://dx.doi.org/10.3390/ma14092111 | DOI Listing |
Sci Rep
January 2025
Division of Dentistry, School of Medical Sciences, The University of Manchester, Manchester, M13 9PL, UK.
This study aims to evaluate the effects of the home bleaching method on the surface microhardness and surface roughness of both polished and unpolished CAD-CAM resin composite materials. A polymer-infiltrated ceramic network (PICN) block, Enamic (VE), along with four resin composite blocks (RCB) (Grandio [GN], Lava™ Ultimate [LV], BRILLIANT Crios [B], and Cerasmart [CS]), were prepared to dimensions of 14 mm × 12 mm × 2 mm and were categorized into unpolished and polished groups (n = 4). Microhardness measurements were conducted using a Vickers microhardness tester (300 gf load for 20 s) at various time points: before home bleaching, after home bleaching with 15% Opalescence for 8 h and for 56 h, 24 h after bleaching, and one month after bleaching.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
Incommensurately modulated crystals are a rare class of materials that are notoriously difficult to characterize properly. We have synthesized two new incommensurately modulated compounds, RbTaSe and CsTaSe, based on the MQ (M = Nb, Ta; Q = S, Se) unit using high-temperature solid-state synthesis. Using superspace crystallography in combination with second harmonic generation measurements, we confirmed both materials to be noncentrosymmetric, falling into the superspace group 1(αβγ)0, while the basic cell suggests 2/.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China. Electronic address:
The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang University, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, 866 Yuhangtang Road, Xihu District, hangzhou City, 310058, Hangzhou, CHINA.
The separation of xylene isomers is a critical and energy-intensive process in the petrochemical industry, primarily due to their closely similar molecular structures and boiling points. In this work, we report the synthesis and application of a novel core-shell zeolitic imidazolate framework (ZIF) composite, ZIF-65@ZIF-67, designed to significantly enhance the kinetic separation of xylene isomers through a synergistic "shell-gated diffusion and core-facilitated transport" strategy. The external ZIF-67 shell selectively restricts the diffusion of larger isomers (MX and OX), while the internal ZIF-65 core accelerates the diffusion of PX, thereby amplifying the diffusion differences among the isomers.
View Article and Find Full Text PDFNano Lett
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
Along with the rapid development of the digital economy and artificial intelligence, heat sinks available for immersion phase-change liquid cooling (IPCLC) of chips are facing huge challenges. Here, we design a high-performance IPCLC heat sink based on a copper microgroove/nanocone (MGNC) composite structure. Maximal heat fluxes () of the MGNC structure, microgroove structure, and flat copper reach 112.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!