The retention of uremic toxins and their pathological effects occurs in the advanced phases of chronic kidney disease (CKD), mainly in stage 5, when the implementation of conventional thrice-weekly hemodialysis is the prevalent and life-saving treatment. However, the start of hemodialysis is associated with both an acceleration of the loss of residual kidney function (RKF) and the shift to an increased intake of proteins, which are precursors of uremic toxins. In this phase, hemodialysis treatment is the only way to remove toxins from the body, but it can be largely inefficient in the case of high molecular weight and/or protein-bound molecules. Instead, even very low levels of RKF are crucial for uremic toxins excretion, which in most cases are protein-derived waste products generated by the intestinal microbiota. Protection of RKF can be obtained even in patients with end-stage kidney disease (ESKD) by a gradual and soft shift to kidney replacement therapy (KRT), for example by combining a once-a-week hemodialysis program with a low or very low-protein diet on the extra-dialysis days. This approach could represent a tailored strategy aimed at limiting the retention of both inorganic and organic toxins. In this paper, we discuss the combination of upstream (i.e., reduced production) and downstream (i.e., increased removal) strategies to reduce the concentration of uremic toxins in patients with ESKD during the transition phase from pure conservative management to full hemodialysis treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073165 | PMC |
http://dx.doi.org/10.3390/toxins13040289 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!