AI Article Synopsis

Article Abstract

Changes in myosin synthesis during the postnatal development of the fast extensor digitorum longus (EDL) and the slow soleus muscles of the kitten were examined using immunocytochemical techniques supplemented by pyrophosphate gel electrophoresis and gel electrophoresis-derived enzyme linked immunosorbent assay (GEDELISA) of myosin isoforms. The antibodies used were monoclonals against heavy chains of slow and fast myosins and a polyclonal against foetal/embryonic myosin. In both muscles in the newborn kitten, there was a population of more mature fibres which stained strongly for slow but weakly for foetal/embryonic myosin. These fibres were considered to be primary fibres. They formed 4.8% of EDL fibres and 26% of soleus fibres at birth, and continued to express slow myosin in adult muscles. The less mature secondary fibres stained strongly for foetal/embryonic myosin, and these could be divided into two subpopulations; fast secondaries in which foetal/embryonic myosin was replaced by fast myosin, and slow secondaries in which the myosin was replaced by slow myosin. At 50 days the EDL had a large population of fast secondaries (83% of total fibres) and a small population of slow secondaries which gradually transformed into fast fibres with maturity. The vast majority of secondary fibres in the soleus were slow secondaries, in which slow myosin synthesis persisted in adult life. There was a restricted zone of fast secondaries in the soleus, and these gradually transformed into slow fibres in adult life. It is proposed that the emergence of primary fibres and the two populations of secondary fibres is myogenically determined.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01682146DOI Listing

Publication Analysis

Top Keywords

foetal/embryonic myosin
16
myosin
12
fibres
12
slow myosin
12
secondary fibres
12
fast secondaries
12
slow secondaries
12
slow
11
changes myosin
8
fast
8

Similar Publications

Muscle spindles are skeletal muscle mechanoreceptors that provide proprioceptive information to the central nervous system. The human adult masseter muscle has greater number, larger and more complex muscle spindles than the adult biceps. For a better knowledge of muscle diversity and physiological properties, this study examined the myosin heavy chain (MyHC) expression of muscle spindle intrafusal fibres in the human young masseter and young biceps muscles by using a panel of monoclonal antibodies (mAbs) against different MyHC isoforms.

View Article and Find Full Text PDF

Changes in myosin synthesis during the postnatal development of the fast extensor digitorum longus (EDL) and the slow soleus muscles of the kitten were examined using immunocytochemical techniques supplemented by pyrophosphate gel electrophoresis and gel electrophoresis-derived enzyme linked immunosorbent assay (GEDELISA) of myosin isoforms. The antibodies used were monoclonals against heavy chains of slow and fast myosins and a polyclonal against foetal/embryonic myosin. In both muscles in the newborn kitten, there was a population of more mature fibres which stained strongly for slow but weakly for foetal/embryonic myosin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!